
NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A257 103

NO 10 1992

NOV D '
SA U

THESIS

PUBLIC-KEY CRYPTOGRAPHY: A
HARDWARE IMPLEMENTATION AND NOVEL

NEURAL NETWORK-BASED APPROACH

by

Phong Nguyen

September, 1992

Thesis Advisor: Chyan Yang

Approved for public release; distribution is unlimited.

92-29267

UNULASS&IEw)
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION U•CLASSIFI lb. RESTRITIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DIST-RIBUTIONIAVAILABILITY OF REPORT
Approved for public release;

21. DECLA,.SIFICATIONIDOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6& NAME QF PETFL.RMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
ectricaL ano aomputer Eng. ,i!.•_ue)_ Naval Postgraduate School

Naval Postgraduate School Code 32
6c. ADDRESS (City, State, and ZIP Code) 71. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Incude Security C PUBLIC-KEY CR.YMrGRAPHY: A HARDWARE IMPLEMENTATION AND

NOVEL NEURAL NErW ORK-BASED APPROACH (U)
12. PERSONAL AUTHOR(S)
Phong Nguyen
3aa. TYPE EPORT 13b. TIME COVERED 14. DATE OF REPORT (Year Month, Day) 15. PAGE COUNT

aster s "lesis FROM TO 09/92 1992 September 1 108
16. SUPPLEMENTARY NOTATIOCThe views expressed in this thesis are those of the author and do nct reflect the offcial
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Cryptography, Public-Key, Secret-Key, Discrete Logarithm, Fas

Exponentiation, Diffie-Hellman, RSA, Inverse, GCD, Neural Networks

Back-Propagation, Factorization, Sum of Residues, Modulo Reduction
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The concealment of information passed over a non-secure communication link lies in the complex field of cryp-
tography. Furthermore, when absolutely no secure channel exists for the exchange of a secret key with which data is
encrypted and decrypted, the remedy lies in a branch of cryptography known as public-key cryptosystem (PKS). This
thesis provides an in-depth study of the public-key cryptosystem. Essential background knowledge is covered leading
up to a VLSI implementation of a fast modulo exponentiator based on the sum of residues (SOR) method. Fast modulo
exponentiation is vital in the most popular PKS schemes. Furthermore, since all cryptosystems make use of some
form of mapping functions, a neural network - an excellent non-linear mapping technique - provides a viable medium
upon which a possible cryptosystem can be based. In examining this possibility, this thesis presents an adaptation of
the back-propagation neural network to a "pseudo" public-key arrangement. Following examinations of the network,
a key management system is then devised. Finally, a complete top-down block diagram of an entire cryptosystem
based on the neural network of this study is proposed.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3 UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

a. NAMEOF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE {Include Area Code) 22c.OmEEI SYMBOL
yan Yang (408) 646-2266 E V

Le-., &.,si ,.oea, a* MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other edtions are obsole•e UNCLASSIFIED

Approved for public release; distribution is unlimited.

PUBLIC-KEY CRYPTOGRAPHY: A HARDWARE IMPLEMENTATION

AND NOVEL NEURAL NETWORK-BASED APPROACH

by

Phong Nguyen
Lieutenant, United States Navy

B.S.E.E., United States Naval Academy, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September, 1992

Author:

Approved by:
Ch anf Yang, fe'sis d

Approved. by:
H.erschel H. Loomis Tr, Second eader

Approved by: //- 'c a ~ ý
Michael A. Morgan, ChairmarK

Department of Electrical and Computer Engineering

ii

ABSTRACT

The concealment of information passed over a non-secure communication link

lies in the complex field of cryptography. Furthermore, when absolutely no secure

channel exists for the exchange of a secret key with which data is encrypted and de-

crypted, the remedy lies in a branch of cryptography known as public-key cryptosys-

tern (PKS). This thesis provides an in-depth study of the public-key cryptosystem.

Essential background knowledge is covered leading up to a VLSI implementation of

a fast modulo exponentiator based on the sum of residues (SOR) method. Fast mod-

ulo exponentiation is vital in the most popular PKS schemes. Furthermore, since all

cryptosystems make use of some form of mapping functions, a neural network - an

excellent non-linear mapping technique - provides a viable medium upon which a

possible cryptosystem can be based. In examining this possibility, this thesis presents

an adaptation of the back-propagation neural network to a "pseudo" public-key ar-

rangement. Following examinations of the network, a key management system is

then devised. Finally, a complete top-down block diagram of an entire cryptosystem

based on the neural network of this study is proposed.

NTiS .
OTIC *,. 'r ~ .

.....................................

•t¾Q..Z.
..r C ...•... ..-'..................

4.

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

II. MATHEMATICAL BASIS FOR THE DEVELOPMENT OF

PUBLIC-KEY CRYPTOSYSTEMS 3

A. MODULO ARITHMETIC 3

B. FAST MODULO EXPONENTIATION 5

C. DISCRETE LOGARITHM 8

D. INVERSES 8

E. ARTIFICIAL NEURAL NETWORK 9

F. THE PUBLIC-KEY CRYPTOSYSTEM 14

1. The Diffie-Hellman Scheme for Public-Key Cryptosystem... 15

2. The RSA Cryptosystem 18

G. CRYPTOANALYSIS 20

1. Factorization 21

III. HARDWARE DEVELOPMENT OF THE PUBLIC-KEY CRYP-

TOSYSTEM 25

A. MODULO EXPONENTIATION USING RECURSIVE SUM OF

RESIDUES 25

1. Sum of Residues Reduction 27

B. VLSI LAYOUT DEVELOPMENT 32

1. Master Slave Flip Flop 32

2. Adder 33

11 M ultiplexer 35

4. Modilo Reductlu, Uui 36

iv

IV. A NEURAL NETWORK-BASED PUBLIC-KEY CRYPTOSYS-

T E M . 40

A. EXPERIMENTS IMPLEMENTING A NEURAL NETWORK IN

CRYPTOSYSTEMS 40

B. EXPERIMENTAL RESULTS AND OBSERVATIONS 46

C. AN IN-DEPTH EXAMPLE 50

D. KEY MANAGEMENT 53

1. A Proposed Pseudo Public-Key Cryptosystem Using A Neural

Network 54

2. Justification of the "Pseudo" Prefix 57

E. PROBLEMS OF A NEURAL NETWORK AS A CRYPTOSYSTEM

AND PROPOSED SOLUTIONS 58

F. DEVELOPMENT OF A COMPLETE BLOCK-DIAGRAM-LEVEL

HARDWARE SCHEME USING A NEURAL NETWORK IN PKS . 61

V. CONCLUSION 64

APPENDIX A. SUPPLEMENTARY PROGRAMS 67

APPENDIX B. RNL SIMULATION OF MODULO REDUCTION

U N IT 72

APPENDIX C. SAMPLE NEURAL NETWORK FROM NEURAL-
W A R E 80

REFERENCES 95

INITIAL DISTRIBUTION LIST 98

V

LIST OF TABLES

2.1 EULER'S TOTIENT FUNCTIONS 5

2.2 EXAMPLE FAST EXPONENTIATION FOR 510 6

2.3 EXAMPLE FAST EXPONENTIATION AND MODULO OF 5'0 mod 9 7

2.4 EXHAUSTIVE FACTORIZATION WITH ONE'486 COMPUTER . 23

2.5 FACTORIZATION TIME WITH SANDIA'S BENCHMARK [REF 17] 24

3.1 EXAMPLE SUM OF RESIDUES FOR 18 mod 7 28

3.2 EXAMPLE RECURSIVE SOR FOR 18 mod 7 28

4.1 EXAMPLE TRAINING SET 45

4.2 TRAINING TIME VS ERROR RELATIONSHIP 47

4.3 RELATIONSHIP BETWEEN NETWORK SIZE AND ERROR . . . 48

4.4 EXHAUSTIVE SEARCH CRYPTOANALYSIS TIME FOR A SIN-

GLE CELL 56

vi

LIST OF FIGURES

2.1 A Processing Element 11

2.2 A Back-Propagation Network 12

2.3 Block Diagram of Diffie-Hellman Cryptosystem 16

2.4 Block Diagram of RSA Cryptosystem 19

3.1 Block Diagram of over all exponentiatiou unit 26

3.2 Modulo Reduction Unit 29

3.3 Overhead Vs Input Bit 30

3.4 Block Diagram of 4-Bit SOR with Logic Units 31

3.5 MSFF Circuit Diagram 32

3.6 MSFF Layout 33

3.7 Adder Circuit 34

3.8 Adder Layout 34

3.9 MUX Function Block Circuit Diagram 35

3.10 Layout of MUX 36

3.11 Layout of 4-bit Modulo Reduction Unit 37

3.12 Size of Modulo Reduction Unit 38

3.13 Speed Performance of Modulo Reduction Unit From SPICE 38

4.1 Neural Network As A Cryptosystem Block Diagram 42

4.2 Back-Propagation Network For Encryption and Decryption 43

4.3 Relationship between Network Size, Iterations to Convergence and

Input Size 49

4.4 Neural Network in PKS 62

vii

ACKNOWLEDGMENTS

The author extends his gratitude to Professor Yang for the insights and en-

couragement throughout the research. In addition, credit must be aknowledged for

LT Daniel Sullivan's assistance in the neural network section and for LT Arthur

Billingsley's general support in this thesis. Finally, my appreciation and admiration

are extended to the faculty and staff of the Electrical and Computer Engineering

Department for the outstanding guidance and opportunity provided throughout the

past two years.

Viii

I. INTRODUCTION

In the recent past, there possibly was a time when protection of vital electronic

information was not considered a necessity and therefore not deemed to be a topic

of common interest. Such a time is forever behind us. In our time, information is

most often passed across a public telecommunication medium. Whether this medium

be a telephone line or satellite link, there exist eavesdropping methcds which are so

sophisticated and efficient that no information is physically secure. How then is one

to revert to the inherent privacy of the past? The answer to this question and thus

the solution to concealment of information lie in the complex science of cryptography.

Cryptography is the field involving the preparation of messages intended to be

incomprehensible to all except those who legitimately possess the means to recover the

original information [Ref 11. At present, the fastest and most popular cryptosystems

employ some convention of mapping a set of numbers representing data to another

set of numbers (encryption). The recovery of data is done by simply reversing the

mapping process so as to obtain the original content (decryption). Often, this type of

mapping is governed by the notion of a key. In order to provide the essential element

of secrecy, system users must provide this key which is -iormally a privately or semi-

privately known string of characters or bits. For a cryptosystem to be completely

secure, knowledge ol. both the mapping function and key is required to recover the

original text from encrypted text.

Of the cryptosystems which use the forementioned concept of a key, two distinct

categories are made: secret-key and public-key.

As suggested by the name, a cryptosystem is secret-key if the key must be

secretly agreed upon prior to any parties being able to communicate through the

system. In this arrangement, both parties normally have the same key which is used

in both encryption and decryption. Algorithms implementing this scheme are labeled

symmetric. Intuitively, one recognizes a severe restriction in the secret-key system:

an advance agreement on the key over a secure channel. When such a channel is

not readily available, the topic of this thesis, public-key cryptosystem (PKS), is the

remedy.

Most PKS systems use an asymmetric algorithm whereupon separate keys are

required for encryption and decryption. This scheme allows the passing of keys,

most likely encryption keys, over an unsecure channel without any compromise to

the system's safety. In boasting this versatile capability, however, public-key system

must pay a price, namely a reduction in system speed [Ref 21. Currently, PKS is much

slower than secret-key, too slow for large quantities of data. For this reason, its use

is often limited to the exchange of keys in secret-key systems. In the future, along

with advancements in technology, perhaps this speed barrier will be lifted yielding

more opportunity for the employment of PKS.

It is in the spirit of this future that this thesis is presented. It is an in-depth

study of the public-key cryptosystem. First, the mathematical basis behind PKS is

covered so as to establish an essential background knowledge in a somewhat esoteric

subject. Second, the capability of VLSI implementation of PKS is explored via a

fast modulo exponentiator, a hardware device required in two of the most popular

public-key systems. A vital component of the fast modulo exponentiator, a modulo

reduction unit, is designed with MAGIC tools [Ref 31, validated with RNL simulation

[Ref 41, and examined for possible use. Finally, to conclude the scope of this research,

a completely novel approach to PKS is proposed: a possible implementation of neural

networks in public-key cryptography.

2

II. MATHEMATICAL BASIS FOR THE
DEVELOPMENT OF PUBLIC-KEY

CRYPTOSYSTEMS

Compared to the complexity of conventional engineering mathematics, the con-

cepts behind the algorithms for public-key crý tosystem are elementary in nature yet

without complete understanding of them, no initial familiarization to the system is

possible. Due to this realizat:on, this chap.,r concentrates heavily on the mathemat-

ics of asymmetric cryptography. It provides a basic overview of modulo arithmetic,

fast exponentiation, and discrete logarithm. It also outlines a backgroind knowledge

in artificial neural networks, a branch of engineering upon which a completely new

angle in cryptography is based. Furthermore, the fundamentals of public-key cryp-

tosystems are covered using two well-established examples, the Diffie-Hellman and

RSA systems. Finally, the chapter concludes with the probiem of cryptoanalysis: the

purpose of all cryptosystems.

A. MODULO ARITHMETIC

Modulo arithmetic is a branch of integer mathematic best explained by an ex-

ample.

Simply,

21 3(rood9)

or

21= 3 + 9 x 2.

3

This ooeration is commonly described as 21 divided by 9 equals 2 with remainder

of 3.
When written as x =- y(mod z), by convention x is said to be "congruent to y

modulo z." Congruency applies if and only if

where k is any integer. Also y is called a residue mod z of x if and only if x

y(mod z).

Note that -15(mod 6) - -3(mod 6).

Clearly, for any z, y belongs to a complete set of residues {O, 1,2..., z - 1}. From

this complete set of residues, there exists a subset called a reduced set of residues

which has elements relatively prime to the modulus z. For example, a complete set

of residues modulo 12 is {O,1, 2,3,4,5,6,7,8,9,10,11}. From this, only {1, 5,7, 11}

does not have a common factor with 12 (0 excluded); it is therefore a reduced set

[Ref 2].

For a modulo prime, clearly the reduced set of residues contains all elements of

the complete set except for 0. Therefore for a prime n, the reduced set of residues

has (n - 1) elements. In addition, generally the reduced set of residues for a product

of two primes m and n has ((m - 1)(n - 1)) elements and that for a prime power nr

has (n - 1)n(* 1) elements. Commonly, the number of elements in a reduced set of

residues for modulo n is referred to as the Euler Totient function 0(n) [Ref 2]. Table

2.1 shows O(n) for several n [Ref 2].

Like normal integer arithmetic, addition and multiplication in integer modulo n

abide by the laws of associativity, commutativity and distributivity [Ref 2].

Theorem 1 [Ref 2]:

(a + b)(mod n) (a mod n + b mod n) mod n

4

I!

n Reduced set 0(n)
n prime 1,2,...,n- 1 n - 1
n2 (n prime) [1,2,...,n- 1,n + 1, n(n- 1)

... ,2n - 1,2n + 1,

nr(n prime) [1, 2,..., n - 1 (n - 1) - (n-1)
... multiples of n < nr] = nr-1 (n - 1)

pq(p, q primes) [1, 2,...,pq - 1 (pq-1)-(q-1)-(p-1)
...multiples of p =(p - 1)(q - 1)
...multiples of q]

pli="p'; (p' primes) 2=1_pie, ___- 1)

TABLE 2.1: EULER'S TOTIENT FUNCTIONS

Theorem 2 [Ref 2]:

ab(mod n) = (a mod n x b mod n) mod n

These two theorems form the basis for the development of fast modulo expo-

nentiation.

B. FAST MODULO EXPONENTIATION

Many public-key cryptosystem requires the computation of X? mod n, with n

and k being extremely large numbers (in excess of 256 bits.) A naive solution would

be to multiply by x a repetition of k - 1 times then taking the modulo of the large

result. At best, this is both cumbersome and inefficient for today's computers due

to finite word length limit. Fortunately, there is an algorithm which avoids this

5

Iteration(i) k bit square ops xPPi-I _ _ _

1 0 51 but kbit= 0 so no op 1 (remains the same)

2 1 52 x 1 152
3 0 (52)2 but kbit= 0 so no op 52 (remains the same)

4 1 ((52)2)2 X 52 510

TABLE 2.2: EXAMPLE FAST EXPONENTIATION FOR 510

straightforward method: fast modular exponentiation [Ref 5].

Taking advantage of Theorem 2, the exponentiation is faster when performed

by repeated squaring operations coupled with conditional multiplication by the par-

tial product according to the binary representation of the exponent. This is best

explained by an example.

Example:

Suppose we are required to find 510 mod 9.

let x =5;k= 10;m=9

Using ppo = 1 and

ppj XV-1 x PPi-I ifk =1
P --- ppi-I if k, = 0

k in binary is 1010. In accordance to k, bit by bit from least significant bit

(LSB) first, the squaring of z occurs iteratively for every k bit (0 or 1) but the result

is multiplied by the partial product only when k bit is 1. All the while, modulo

operation is performed in each squaring or multiplication in order to maintain a

manageable intermediate result. The partial product is always initialized to 1 (partial

product at iteration step 0, ppo = 1). Let's examine Table 2.2 for clarity. From the

result of Table 2.2, indeed we have accomplished 510. 0

If we incorporate the modulo operation into each iteration according to Theorem

2, the modulo problem is also solved. Table 2.3 incorporates modulo reduction to

6

Iteration k bit Square ops Multiply ops pp1
1 0 (5) mod 9 = 5 1 (Init)
2 1 (5 2)rmod9=7x lmod9 =7
3 0 (7 2) mod 9 = 4
4 1 (4 2) mod9=7x 7mod9 =49

TABLE 2.3: EXAMPLE FAST EXPONENTIATION AND MODULO OF 510 mod 9

the previous example.

Example:

510 mod 9

Table 2.3 outlines in detail the process until a partial product of 49 is obtained.

Note that the result of the square operation becomes the number to be squared in the

next iteration. Also the previous partial product is the number in the multiplying

operation if the k bit is 1. In this example, since 49 mod 9 = 4, indeed 510 mod 09

(which also equals 4) is performed. 0

In this example the savings in multiplications is 4 (5 versus 9 using the naive

method). For larger number applications, let a be the number of binary bits of the

exponent k and b be log 2 a. Using fast exponentiation, the number of multiplications

(call it X) is bounded by b + 1 < X < 2b + 1 depending on the number of l's and

O's in k. X with fast exponentiation grows linearly in length of k and is considerably

smaller then X obtained by the straightforward method of multi',!ying by k - 1 times

[Ref 5].

Appendix A contains a C program implementing fast modular exponentiation

using the above algorithm. It should be noted that the program is not suitable for

numbers exceeding the capability of the computer. Most computers have 32 bits res-

olution therefore results which are greater than 32 bits are likely to be too large. This

limitation, however, is resolved by using hardware for fast modular exponentiation

7

as will be shown in Chapter III.

C. DISCRETE LOGARITHM

Discrete logarithm is the branch of mathematics centered on the solution to the

exponent of a powered number; namely, finding x in a' = b mod n when given a, b, n.

Example:

a = 3;b = 4;n = 11;

31 mod 11 = 3

32 Mod 11 = 9

33 Mod 11 = 5

34 Mod 11 = 4

so X = 4.

Given a large modulus n and a, b (greater than 100 digits magnitude), discrete

logarithm is classified as a non-deterministic polynomials problem; the solution to

which is extremely difficult and impractical to derive [Ref 6]. Therefore its use is

prevalent throughout many public-key cryptosystems.

D. INVERSES

Unlike integer arithmetic, modulo arithmetic often has inverses. Given a E

{0,n - 1}, there could be a unique b E {0, n - l} such that

ab(mod n) _ 1 [Ref 2]

A systematic method to compute inverses involves the notion of the greatest

common divisor (gcd). Conventionally, gcd(a, b) is an integer c such that a/c and

8

b/c result in the smallest possible integer value. For example, gcd(8, 12) = 4 but

gcd(8,16) = 8.

From the mathematics of gcd, we pose:

Lemma 1 [Ref 21: if gcd(a, n) = 1 then

a, mod n 36 a3 mod n;0 : ij < n

Fermat's Theorem [Ref 2]: p is a prime and gcd(a, p) = 1 then

a(P- 1)(mod p) = 1

Theorem 3 [Ref 2]:if gcd(a, n) = 1 then an a-1 , 0 < a-1 < n exists such that

aa-1 = 1(mod n)

Theorem 4 [Ref 2]: if gcd(a, n) = 1 then

aO(n) mod n = 1

Recall 0(n) is the number of elements in a reduced set of residues (Table 2.1).

From the above Theorems, Euclid's algorithm is developed to find gcd(a, n) as

well as inverse a-1 (mod n) of a mod n. It is not within the scope of this study to

detail the foundation of this algorithm. If further information is preferred, reference

2 is suggested for consultation. For the purpose of this thesis, C programs for gcd

and inverse are provided in Appendix A [Ref 2].

E. ARTIFICIAL NEURAL NETWORK

In 1985, Ackley, Hinton and Sejnowski [Ref 7] applied a back-propagation neural

network to encode orthogonal binary vectors of length N using log2N hidden units.

Following this, Cottrell, Munro and Zipser [Ref 8] used the same type of network to

9

achieve image (data) compression. Both these two application examples involved a

special form of mapping via neural networks and, thus, suggested a possible use in

cryptography. In fact, they are inspirational for the work of Chapter IV in this thesis

which explores in detail the possibility of implementing neural networks in a novel

public-key cryptosystem. In light of this, this section provides a basic understanding

of neural networks, especially the back-propagation neural network.

A formal definition of a neural network is:

"A neural network is a parallel, distributed information processing structure con-

sisting of processing elements (which can possess a local memory and can carry out

localized information processing operations) interconnected via unidirectional signal

channels called connections. Each processing element has a single output connection

that branches into as many collateral connections as desired; each carries the same

signal- the processing element ouput. This ouput signal can be of any mathematical

types. The information of each element can be arbitrary with the restriction that it

must be completely local; it must depend only on the current values of arriving input

signals at and on values in local memory." [Ref 9]

Having defined a neural network, the basic unit, a processing element, is shown

in Figure 2.1. The processing element has many input connections combined by a

simple summation. The combination is then transformed through a transfer function.

The function of interest here is a hyperbolic tangent. The single ouput of the element

is fanned out to several ouput paths which then become inputs of other elements. The

ouput to input connections each has a corresponding weight. Since the connections

prior to entering the elements are modified by the weights, the summation within

each element is a weighted sum. The actual mathematical process within an element

is thus:

f(E wijxi); i = layer; j = number of weights

10

xl

)(2

xn

Figure 2.1: A Processing Element

An overall neural network consists of many processing elements joined together

as previously discussed. A typical neural network, a back-propagation network in

this case, is shown in Figure 2.2 [Ref 10]. For organization purpose, processing

elements are grouped into layers. A normal network is composed of two layers with

connections to the outside world: an input buffer where data is entered and an output

buffer where the response of the network to the given input is stored. Layers between

the input and ouput layers are named hidden layers [Ref 10].

There are currently many types of neural networks designed for multitude of

applications. For the purpose of encoding and decoding in a cryptosystem where the

mapping of input to output is almost always non-linear, a most suitable network is

the back-propagation type.

A back-propagation neural network is a 3 to 5 layer network that behaves as an

interpolative-associative mapping scheme. That is it has the ability to learn map-

ping by generalizing input/ouput pairs relationship [Ref 91. Moreover, the network

employs a supervised, delta-rule learning scheme whereupon the input stimulus and

corresponding output are first presented to the system which in turn reduces the

error between the actual output of each element and the desired ouput and gradually

11

0 U :t

j4 Is~. 17id en~.................

, H i d d e n

'Ail
Bi 2 .Jt..." I

accomplished, the error is reduced to minimum and the actual outputs of all inputs

of interest will be approximately equaled to the theoretical output [Ref 101.

Having covered the necessary basics, the mathematical background for the back-

propagation network is now provided. In order to establish a common convention,

the notations used for this development is as follows.

9 x] -- current output of j" neuron in layer s,

* Wl!) connection weights joining ith neuron in layer is-i] to jth neuron in layer

I("] a weight summation of inputs to jth neuron in layer s.

The mathematical process for single back-propagation element is:

P) = f E((IS.-,i)I = S,(J;3)

12

Given that the network has some global error function E, the critical parameter

that is fed back through the layers is defined as:

•~S O, :-E/OIH°

where e(°] is the local error of processing element j in layer s. Furthermore,

using the chain rule twice yields:

ct'1
-=IJ[l n 's) 1(+1es+11

k

The main mechanism in the back-propagation network is to forward the input to

the output, determine the error at the output, then propagate the errors back using

the above equations. Given knowledge of local errors, the final aim is to minimize

the global error by modifying the weights.

This is done by using the gradient rule which dictates that the weights change

in the direction of minimum error.

w;I= -k(8E/w)

where k is a learning coefficient.

Again using the chain rule:

M/ia•.'? : (8E/8aI()(aI(/31 1) [- -1

Lw= 1 ke 3•1'-
1

For an in-depth derivation of all forementioned equations, the reader is referred

to references 9 and 10.

Using the above equations in several iterations, an algorithm for the back-

propagation network can be developed to train the network weights in converging to

13

a given set of training data: inputs and corresponding outputs. It is not within the

scope of this research to derive or show the algorithm; however, such an algorithm

can be found in reference 9. In Chapter IV, a specific software package, Neuralware,

will be utilize to set up a back-propagation network. The network will train with

specific mapping functions so as to accomplish an encryption and decryption scheme

in a newly-proposed "pseudo" public-key cryptosystem.

This concludes the necessary background in mathematic. We are now equipped

with enough knowledge to explore the core of the public-key cryptosystem.

F. THE PUBLIC-KEY CRYPTOSYSTEM

The single foundation upon which all asymmetric cryptosystems are built is that

of the one-way function. Such a function is practical to solve in one direction but

within a range it is computationally infeasible for any algorithm to invert the solution

taken over a range of elements [Ref 11]. A formal definition of a one-way function is

beyond the scope of this study. An informal definition is that a one-way function is

one in which for f : x --+ y, it is easy to find y = f(x) given x. However, given y, it

is difficult to compute x such that f(x) = y [Ref 12]. For use in cryptography, the

difficulty must be great enough so as to render the solution impractical.

Currently we have a few one-way functions which are utilized exclusively in the

public-key system. A good example of a one-way function is integer multiplication.

Whereas the multiplication of large integers is relatively easy with current technol-

ogy, the factoring of a large integer is time-consuming to the point of infeasibility.

Another important example is modular exponentiation with large exponents. As

previously discussed, fast exponentiation techniques makes the exponentiation prac-

tical. However, even with the best current algorithms and technology, the solution

of a discrete logarithmic problem of such magnitude remains unattainable within a

14

reasonable time [Ref 131. To see how the two suggested one-way functions are used

in public-key cryptosystems, in-depth studies of two systems are now provided: the

Diffie-Heilman and RSA cryptosystems.

1. The Diffie-Hellman Scheme for Public-Key Cryp-
tosystem

The first system to achieve the notoriety of a true public-key system was

proposed by Diffie and Heilman seminal paper in 1976 [Ref 14]. It is in this paper

that the discrete logarithm problem was first proposed as a candidate for a one-way

function. The scheme is best summarized as follows.

Let n be a large integer and g, another integer, such that g E 11,n - 1}.

Parties A and B establish n and g over insecure channels. A then chooses a large

integer x and computes g' mod n while B chooses y and computes gy mod n. Next, A

and B exchanges their perspective computations again over insecure channels without

divulging x and y. At this point A has gY and n (possibly compromised over unsecured

channels) and x which was never communicated to anyone. Similarly, B has ge, n

and y. A and B can construct the key as follows.

for A: key = (gy)' mod n

for B: key = (g')" mod n

(g')' mod n = (gZ)& mod n

Clearly A and B now have the same key (g-)Y omod n which can be used

for any cryptography systems. Because the operation of exponentiation with large

exponent is slow, Diffie-Hellman is proposed only to make keys for faster private-key

system such as DES so that the key will not be compromised [Ref 12 1.
Even if a cryptanalyst was able to intercept the exchanges for g, n, gX mod n

and gy mod n, he faces the problem of finding x and y from his known data. He must

15

Party A Party B

Uftsecur4 Channel

(N to Prime) And A (N Is Prime) And A
Primitve Elementt Primitve Element

leNtt sa ecret Key 1
K yIy

to~m•= M(mod N) (m

Decrypt Dy Finding fDecrypt Dy Finding
Iavere ' Such That IInverse K' Such That

KCca I (god N-I) i' =1 (mod N-I)

M puts (rodN) MaN m,,,•(mod N)

Figure 2.3: Block Diagram of Diie-Helnman cryptosystem

16

solve a discrete logarithm problem, an NP class problem, which, to date, is accepted

to be infeasible within certain time restraints [Ref 131. A summarizing block diagram

of the Diffie-Hellman cryptosystem is provided in Figure 2.3. Moreover, an example

of its application is hereby offered.

Example [Ref 13]:

Let g = 7 and n = 2 x 739(7149 - 1)/6 + 1.

Party A chooses a secret x, compute and send 7- to B.

B receives 7-T=

1274021801199739468824269244334322849749382042586931621654557735290322

914679095998681860978813046595166455458144280588076766033781

Party B chooses a secret y, compute and send 7Y to A.

A receives 7y=

180162285287453102444782834834836799895015967046695346697313025121734

0599537720584759581176910625380692101651848662362137934026803049

Now both A and B can compute 7'Y and mod it with n to establish secret

key 7Y mod n. Since a party other than A and B does not know either x or y in this

case, it is infeasible to attempt finding. 7Y'.

Note: The numbers in this example are obtained from reference 1^ where

neither x nor y was divulged. This author has been unable to find their values. In

the original article, a challenge of 100 dollars was offered to anyone who could solve

for x and y and thus 7rY.0

Presently, the Diffie-Hellman scheme remains trustworthy because the dis-

crete logarithm problem is still a difficult one to solve. Nf-vrtheless, no one has

17

proven beyond a doubt that it is impossible to solve. In fact, many algorithms do

exist which can derive the solution. The only setback is that even the best of them

is not fast enough with current technology. For more safety, the integers x and y can

simply be increased in magnitude and for the worst case, an establishment of new

key within an acceptable time interval can render any cryptoanalysis harmless.

2. The RSA Cryptosystem

Invented in 1978, the Rivest, Shamir and Adleman (RSA) public-key cryp-

tosystem incorporates two one-way functions: the discrete logarithm and factoriza-

tion problems. The security guaranteed by this system is so sound that since its in-

ception until present, it has been accepted as the most popular method of public-key

encryption [Ref 15]. The elegance and subtle power of the RSA system is summarized

as follows.

Party A generates 2 random primes of approximately 130 bits each, p and

q. The product pq is then computed and called n. The number of reduced residues

elements is next obtained: 0(n) = (p - 1)(q - 1) (see Table 2.1). In turn, an integer

e is generated such that gcd(e, 0(n)) = 1. A now has the public key < e, n > which

can be published to B through insecured channels.

Having the public key, party B can encrypt a message by transforming the

message into an integer value m. m is then encrypt by:

Encryp(m) = m' mod n

In order to be able to decipher Encryp(m), A must make a private key from

O(n) and e. Such a key, D, is found by using Euclid's algorithm (Appendix A) so

that,

De = 1 mod O(n)

18

Party A Party B

COME" a

Omeanois a Gush &M
a840. 0) = I

J gmab-o C mel th
,"-W I ý i] I<,

Nou-goal -h IN -~ IorptN
goodNa~J Wfaa PEW#AJA <.> zI 0d1

'.3 I' -''

Figure 2.4: Block Diagram of RSA Cryptosystem

Once D is found, the deciphering is simply done by,

Deciph(Encryp(m)) = (Encryp(m))D mod n

Proof [Ref 6]:

Given all parameters above, by Euler's Theorem:

if De = 1 mod (ak) mDe = m mod n

--. mDe mod n =m

Figure 2.4 clarifies the process. In addition, a pedagogical example of RSA

at work is shown below.

19

Example:

(Use actual Appendix A programs)

Let p = 7; q = 13 -- n = 7 x 13 = 91; O(n) = (7 - 1)(13 - 1) = 72

Pick e = 5 and D = 29 such that De = 20(n) + 1 = 145

Message m = 23

Encryp(m) = 23" mod 91 = 4.

Decryp(m) = 4" mod 91 = 23.3

Judging solely on the above example, it might not seem obvious that the

RSA system is safe. The reason is because the example's numbers are small. As

stated earlier, with p and q both being about 130 bits, their product,n, can range

in excess of 160 bits. In turn, e and D are also large numbers. Given this kind of

range, to crack the code, one must face the discrete logarithm as well as factorization.

To date, the factorization of a large product of primes remains unsolvable within a

feasible time [Ref 2]. This fact is further examined in the next section, cryptoanalysis.

G. CRYPTOANALYSIS

The art of breaking cryptographic code is called cryptoanalysis. Since there are

many public-key systems, the cryptoanalysis of only the RSA system is discussed so

as to provide a flavor of how difficult it is and thereby prove its soundness.

The gist behind breaking the RSA system is the ability to solve for both the

discrete logarithm and factorization problems. The latter of the two is the most

difficult so the discrete logarithm problem will be the first to be explored.

Given the public key < e, n > and let's assume we were somehow able to factor

n and therefore know p and q. We can now use Euclid's algorithm the same way as if

the sender would to make his/her private key. Take the example in the RSA section.

20

< e,n >=< 5,91 >

Knowing p and q we can compute O(n) = (p - 1)(q - 1)

Use Euclid's algorithm to find the secret key D such that

De = 1 mod O(n)

With D, the sender's encryption can be intercepted and decrypted by

encryp(m)D mod n

We have done the easy part. So far we assumed to know the two prime factors

of the modulo n in the public key < e, n >. The main insurance of the RSA system

is the derivation of the two factors p and q (Ref 151. Whereas the cryptographer

only has to come up with two primes, a difficult task but not impossible with the

primes being about 130 bits, the cryptoanalyst, in order to recover the two primes to

compute O(n), must face the grim task of factoring a number in excess of 260 digits

within a finite time limit. This leads to the topic of factorization which will also

be exploited as the safety basis for the later proposed cryptosytem based on neural

network.

1. Factorization

A factorization problem has no current classification but the consensus is

that it is neither a Polynomial (P) nor Nondeterministic Polynomial (NP)- Complete

problem [Ref 16]. It is loosely described as a Nondeterministic Polynomial Indistin-

guishable (NPI) problem [Ref 16]. An algorithm is said to run in polynomial time

(P) if there are constants A and c such that the running time for all inputs of length

21

k is AkC for all k. All P problems are deterministic and P-time bounded. An al-

gorithm is deterministic if at each step of the computation, the next step is unique.

P-time bounded means that the execution is in polynomial time since its complexity

is bounded by a polynomial in the input length. An algorithm is said to run in

NP time if there are no known deterministic P-time solution. In NP problems, at

each step of computation, decision problems on the next step exist. To systemati-

cally solve an NP problem requires exponential time. A subset of NP problems, an

NP-complete problem surfaces when P=NP. NP-complete problems are considered

as the most difficult class in NP. An NPI problem is basically defined as having the

level of difficulty in between NP and NP-complete. Factorization, an NPI problem,

can not be solved in P-time and is not a member of NP-complete [Ref 2].

In order to be convinced that factorization of large numbers is at this time

insurmountable, we examine the most straightforward and therefore easiest method.

Given a number n to be factorized, we compute Vii and round it to the next integer

value, m. We then use rm as the final index of a for to loop beginning with 1. In each

iteration of the loop, the operation (n mod index) is performed until the result is 0

notifying that an integer factor is found. Considering the speed of the computer, this

is not a bad method of factorization if n is within a certain range of digits in length.

However, this limit is what is exploited in public-key system (n is more than 130

digits in length.) The shortcoming of this method is explored using Matlab program

on an IBM '486, 50 MHz, 16 MBytes (Appendix A). The result is shown in Table

2.4.

Undisputably, with n being at least 100 decimal bits in the RSA system, the

method above, although possible, is hardly feasible if exhaustive search is required.

Fortunately, the mathematics of factoring have long surpassed the simplicity

of the forementioned method. Currently there are established algorithms as well as

22

Digits factorized Aprroximate time
10 less than lmsec
15 1.5aec
20 15min
25 28hr
30 3yr *

40 3000 centuries *

• Estimate

TABLE 2.4: EXHAUSTIVE FACTORIZATION WITH ONE '486 COMPUTER

on-going researches which could reduce the time factor at a phenomenal rate.

As a result of a concerted effort initiated in 1982, the mathematics de-

partment at Sandia National Laboratory established some tangible bounds on the

computational feasibility of factoring large numbers. The outcome, using a Cray

X-MP computer, was within a range of 7.2 minutes to 32 hours for numbers varying

from 55 to 77 digits in length [Ref 17]:

In a separate study by Ronald Rivest (Ref 151, it is proven that with the

best algorithm available such as that of a quadratic sieve [Ref 18], a large prime

composite integer can be factored with a running time proportional to:

In the range of interest(approximately 256 bits in length), for k bit number

n, a crude approximation is:

5 X 109+(k/5°)

Using Sandia's benchmark that a 75-digit number can be factored in about

1 day [Ref 17] and the formula of Rivest's article [Ref 15], Table 2.5 is derived [Ref

17]..

Based on the data above, it is safe to surmise that the problem of factor-

ization of large number will remain insurmountable for a long time given current

23

Number of digits Number of operations Solution time
75 9 x 1012 1 day
100 2 x 1015 255 days
125 3 x 1017 103 years
150 3 x 10'9 9755 years
175 2 x 1021 70 thousand years
200 1 x 1023 36 million years

TABLE 2.5: FACTORIZATION TIME WITH SANDIA'S BENCHMARK [REF 171

knowledge and technology. The exploitation of this problem in the RSA system and

the neural network-based system of Chapter IV is hereby justified.

24

III. HARDWARE DEVELOPMENT OF THE
PUBLIC-KEY CRYPTOSYSTEM

The feasibility of most popular public-key systems is heavily dependent upon

the possibility of hardware implementation. Although the algorithm is theoretically

simple, its software implementation is slow and highly limited to the resolution of

the processor. Such problems are not worth tackling when, with the available VLSI

technology, hardware implementation is faster and more efficient.

The crux of many public-key cryptosystems hardware rests on the ability to

devise a fast exponentiation scheme where the exponent and modulus are extreme in

length (greater than 256 bits). From our two sample cryptosystems, Diffie-Hellman

and RSA, the fast exponentiation problem is essential in putting the theory to prac-

tice. To familiarize the reader with the possibility for hardware implementation of

existing public-key cryptosystems, this chapter will develop in detail a hardware

scheme for fast exponentiation based the recursive sum of residues algorithm.

A. MODULO EXPONENTIATION USING RECURSIVE
SUM OF RESIDUES

Currently the most popular working hardware for the RSA system performs

exponentiation by repeated squaring operations coupled with conditional multipli-

cation. During each square or multiplication stage, modulo reduction is also incor-

porated so as to maintain a small intermediate result [Ref 19]. The combination of

squaring (considered as part of multiplication), multiplication and modulo reduction

operations forms the core of fast exponentiation. Currently, there are two categories

separating the various methods of implementations:

25

I Expandedl I Plain Textl

F1iag m oSum of
promo the p c [Serial Residues• I Modulo

Control Multiplier Reduction
And 1/0 _ Unit
Logic

Figure 3.1: Block Diagram of over all exponentiation unit

1. Multiplication and modulo reduction are done in tandem. As the partial prod-

ucts are formed, a decision based on special algorithms is made on whether to

perform a reduction on the product [Ref 19].

2. Multiplication and modulo reduction are done sequentially. The result of the

multiplication is first obtained and then fed serially to the modulo reduction

unit (Ref 191.

For the purpose of this thesis, only the latter case (2) is considered. The under-

lying reason behind this choice is simplicity which leads to a modular structure that

in turn can easily be implemented in VLSI. Moreover, the first part of this hardware

scheme, a serial multiplier, will not be delved into with details due to the abundance

of such units already available. This leads us to focus on the hardware implementa-

tion of the modulo reduction unit to which the result of the serial multiplier is fed

into in accordance to the basic block diagram of Figure 3.1 [Ref 19].

26

1. Sum of Residues Reduction

Our modulo reduction unit is based on the sum-of-residues reduction

method. That is the number, x, reduced by modulus, m, is expressed in the fol-

lowing binary form:
x = • xi2'-'; xi = [0, 1]

i=1

The modulo reduction is

z mod m = ("2i-1) mod m
i=1

Since modulo reduction is associative

n

x mod m = (' xi(2'- 1 mod m)) mod m
i-I

Summarizing, one performs the reduction as a conditional power of 2 re-

duced by mod m (a residue) and a summation of all the resulting residues (hence

sum of residues) [Ref 19].

Example:

modulus m is 7, x = 10010 =_ 18 , i initialized to 1.

Residues are at 21 and 21 due to positions of 1 in 10010. Respectively the

residues are 2 mod 7 and 16 mod 7 which are 2 and 2. Hence E ri = r, +r 4 = 2+2 =

4.

Table 3.1 summarizes the SOR process for the example which resulted in:

(sri) mod 7 = 4 mod 7 = 4

Indeed 18 mod 7 = 4

Given a modulus, residues can be obtained by a look-up table; however,

this requires excessive space. Given n as the modulus length, a typical table size is n

27

shift x LSB First 'x residue 2'-1 mod 7 = resulting residue
0 x 2 0 mod7=1 =0
1 x 21 mod 7 = 2 = 2
0 x 22 mod 7 = 4 = 0
0 x 2 3 mod 7 = 1 = 0
1 x 24 mod7=2 =2

• residues will repeat E resulting
124124... residues = 4
pattern I _I

TABLE 3.1: EXAMPLE SUM OF RESIDUES FOR 18 mod 7

iteration 2ri-. - m ri = 2ri- 1 or 2ri-I - m
1 r, initialized to 1
2 2x1-7<0 2x1=2
3 2x2--7<0 2x2=4
4 2x4--7>0 2x4-7=1
5 2x1-7<0 2x1-=2

TABLE 3.2: EXAMPLE RECURSIVE SOR FOR 18 mod 7

by 2n. With n being greater than 256 bits, this would require extremely large data

paths, undesirable in silicon implementation [Ref 19]. For this reason, it would be

more desirable to calculate the residues-as necessary in accordance with the piven

modulus. Fortunately, there is a simple recursive formula which allows for easy

hardware calculation of residues:

ith residues = ri; i = 2...n
ri 2ri-1 iff (2ri-I - m < 0)

r= 2ri-I--rm iff (2ri-Ž--mn>0)

r, initialized to 1 [Ref 19]

Taking the previous example from Table 3.1 and incorporating into it the

28

Resulting MSB Shifted Bit By Bit. LSB First

F uModulus in
M o(Sign Bit)

12's ComplementI 2:1 Max

A dg o x by # of bits Residue m Pi
Modulus prvd

Adder

191
Rpib rn (Multiply|2 r ",,X 2I r byi Pi

(Using left

shift retistersl r x Pi

dbAccumulatore
l

Result i Output

Figure 3.2: Modulo Reduction Unit

recursive sum of residues method, the result of which is in Table 3.2, indeed the

residues are the iterative pattern: 1,2,4,1,2,4,1...

A diagram of an architecture using the sum of residues method for modulo

reduction is provided in Figure 3.2 [Ref 19g .

Respectively, M and R ate two n-bit registers holding (-r), the two's

complement of the modulus, and rm, the current residue. Initially, the current residue
is set to 1. As the system is clocked, the register is loaded with 2ri or 2ri - mn,

depending on the sign bit of the 2ri - mn add. The accumulator sums those residues

which are passed by the incoming bits of the serial multiplier's product P. There's

an overhead amount of bits which must be taken into acount for the accumulator's

size. The necessary overhead bits are given in Figure 3.3 (Ref 191.

Having a sound understanding of the theory behind the architecture in

Figure 3.2, the next obstacle that must be cleared is the transformation of the theory

to an actual VLSI layout. With some intuition and basic knowledge of logic circuit, a

block diagram complete with logic units, inputs and outputs is developed and shown

29

12

10-

b.~

4
2-

0 100 2'00 3;% 400 50'0 6

Input Bit-LUngth

Figure 3.3: Overhead Vs Input Bit

in Figure 3.4.

A few details in the transformation between Figures 3.2 and 3.4 are hereby

stated for clarification. Whereas in Figure 3.2 a multiplier was used to obtain the

correct residue for the accumulator, in the final design, a multiplexer is chosen to

perform the multiplication. Also the left shift logical to obtain 2ri is finalized without

a shift register but rather by hardwiring the outputs of the residues directly to the

inputs of the first adder.

From a VLSI perspective of Figure 3.4, one sees that it is beneficial to devise

a modular unit (shaded region) which could easily be assembled together to form a

larger complete reduction unit satisfying the length of the modulus. To realize a

single modular unit, only 2 master-slave flip flop's (MSFF), 2 combinational adders

and 2 2:1 multiplexers are needed. The control for this unit alone and for the rest of

the modular reduction device is a couple of simple two-phase clocks. The simplicity

of this modular scheme is attractive. However, the cost is in silicon area and speed

as we will see.

30

1- I - -- Z

I* ~2's Complement of Modulo
-A ll 11 Number 7 1 00 1

PU~~~ BIbe PMU L.Mo
Shifteut ounp In flit U. MX \Muti

~~si 3 PA: #1sdu

=>umO Residues

Fhigured 3.4:n Bloc Digam f- Bi UsR with Logi Units pl

At ATim, LD Fist y IO31

input otu

Figure 3.5: MSFF Circuit Diagram

B. VLSI LAYOUT DEVELOPMENT

1. Master Slave Flip Flop

The desire for a simple control method, a two-phase clock, necessitates the

use of a master-slave flip flop instead of a direct latch. In the first stage where

the residues are computed, the adder uses the output of the flip flop (slave) while

the output of the hardwired shift left 2ri is transferred to the input end of the flip

flop(master). The same requirements for the flip flop are imposed in the accumulator

unit where the flip flop must act as both the accumulator's adder output register

(master) as well as accumulated input to the adder.

The chosen circuit for our master-slave flip flop is shown in Figure 3.5 [Ref

201.

Analysis of Figure 3.5 shows two cascading 2-phase static latch. This struc-

ture is sound and efficient to implement. A minor problem of clock race is possible

when clock is high and clockbar overlaps it causing a tendency for the input and feed-

back signal to contest with the new value on the flip flop input [Ref 201. Fortunately,

for our purpose, this problem did not manifest itself as the feedback transistor is

designed to "trickle": transistor / is low [Ref 20]. The VLSI layout for the master-

32

• -- •.. .

UN

Figure 3.6: MSFF Layout

slave flip flop is given in Figure 3.6. It should be preempted that the design will

be slightly alter later on in order to conform to the overall modularity of the entire

modulo reduction unit.

Silicon space for the MSFF is 64 x 135/ rm2 . SPICE analysis [Ref 21] on the

layout determined a delay from input to output to be i0ns. The maximum speed

of operation for the MSFF is 100Mhz. Since the input and output of the MSFF is

inherent only to the single module, no effect from the other modules are of concern.

2. Adder

Due to the modularity of the design, the simplest approach is taken in the

development of the two adders in the modlule. The chosen unit for both adders is

a combinational adder with approximately equal sum and carry delays. Carries are

allowed to ripple through the necessary modules. This choice is made mainly to

conform to the modular structure. The ripple carry design does cost much ini speed.

The circuit diagram for the adder is shown in Figure 3.7 [Ref 20]. The appropriate

33

F'a

ad-ad Fla CA F

&.IaH ~ *HC-7

Figure 3.7: Adder Circuit

_ __....................... ,

..
MOTA"'M T9. _ _M

'- M. MW ,S

M7
' -N\

mop ký Figure. 3.......: Adder. Layout...
layout follows N.Fgre38

The adder layout..sizes.up.to 73...145...... SPC anlyisRe.1]ofa.inl
adder unt showe that.th.sum.an car delays.... are 8..n .srseciey

From~~~~~~~~~~~...... thsreut.it.to .icaesta.we.teuiti.pt.gehr.o. lre
moduus,.he.ar.yh .i will be th limiting... paa mee for. sped.fopeation

34........W.....

Out

Select

a b

Figure 3.9: MUX Function Block Circuit Diagram

3. Multiplexer

The reduction unit calls for the use of two 2:1 mux's per bit of modulus.

The first takes its select input from the sign bit of the sum of the first adder and

output 2r, or 2ri - m as appropriate. The second simply acts as a multiplier with

its select input as the single bit shifted in from the output of the serial multiplier

and outputs the residues if the select is 1 and 0 if select is 0. In short it acts as a

single bit multiplier. For our multiplexer, a function block design is used [Ref 22].

The circuit is shown in Figure 3.9 [Ref 22].

This is an NMOS device in which only one of the two inputs a, b is passed to

the output depending on whether NMOS-1 or NMOS-2 is turned on. Only one NMOS

gate can turn on at the time because the inputs to their gates are complements.

Intuitively, the select input of the multiplexer is the input to the two gates. The

VLSI layout is shown in Figure 3.10.

Because of the simplicity of the circuit, the only delay is one transistor

gate. Compared to the delay of the adder or flip flop, this is negligible and will not

be delved into. The size of the layout is 32 x 33 /zm 2.

35

! !
S

OVIN

S

........ . :t.. ',...

Figure 3.10: Layout of MUX

4. Modulo Reduction Unit

Having all the necessary components, the entire modulo reduction unit can

now be developed. As previously mentioned, a "modular" design is implemented

in this thesis so that, depending on the size of the modulus, the entire unit can be

constructed by simply cascading the same module together n times (modulus is n-bit

in length.) Bearing this in mind, the layout for the module as well as a 4-bit modulus

modulo reduction unit is shown in Figure 3.11.

The foremost significance of the VLSI scheme for the modulo reduction unit

is that it is simple in implementation and, above all, it works. Using a CFL program

[Ref 31, the module can easily be generated into an n bit unit. Experimentally, RNL

simulations were performed [Ref 3]. The results, which are enclosed in Appendix

B, testify strongly on behalf of the unit's functional capability. However, as to the

efficiency in area and speed, the empirical data is debatable in support of different

individual's needs.

Since the modulo reduction unit is designed mainly for modularity, the size

of the entire structure grows geometrically with the number of bit that the unit is

designed for. Each module per bit is sized at 73 x 672 ,um 2. If n is the number of

bits required to be modulo reduced, then n modules are needed. Disregarding the

36

. ~ +:r : wr ~ ~ t~* r

_________.. .. ~....... &nse

-.. I o "

.... a..~.. .. .~ se Z.

3... LD. .~ * . 5. a .. e-U m

...... - ------- - - -w,

*S~g~".S..... ~ * .4.aa4..4.. s.a u-
... 4 MU . *.* * - . - -

.....
1m .

Figure 3.11: Layout of 4-bit Modu~lo Reduction Unit

37

14
.

12

c10-
0.

O0 50 100 150 200 250' , , i 300

Input Bit-Length

Figure 3.12: Size of Modulo Rvd<uction Unit

6 6

U

0 5 100 150 200 250 350

Number of Bits
Figure 3.13: Speed Performance of Modulo Reduction Unit From SPICE

minimal effect of overhead bits (Figure 3.3), the size of a modulo redu ction unit for

n-bit modulus is n x 49056i~m2. Figure 3.12 is a plot relating the size of the unit to

the number of bits.

In regard to speed conside'ration, experimental data found the unit's car-

rychain to be the limiting factor. After SPICE simulation [Ref 21], Figure 3.13 was

obtained to gauge the speed performance of the modulo reduction unit.

38

Since the carrychain imposes the speed limit in this design, intuitively, one

can incorporate speed saving techniques such as various carry-look-ahead adders;

however, this will alter the modularity structure. This is beyond the scope of the

thesis but remains a viable avenue for speed improvement at the expense of silicon

space.

In summary, this chapter has provided the basic hardware building blocks

for a fast exponentiation scheme with specific details on a modulo reduction unit.

From this foundation, an RSA hardware implementation can easily be conceived.

Such an implementation is necessary in many applications, one of which is the subject

of the next chapter: a novel approach to PKS using neural networks. As will be

explained in the following chapter, the hardware technology developed here will be a

small integral part of a "pseudo" public-key cryptosystem based on neural networks.

39

IV. A NEURAL NETWORK-BASED
PUBLIC-KEY CRYPTOSYSTEM

Since all cryptosystems make use of some form of mapping functions to trans-

form data to unintelligible code and then recover it, a neural network - inherently

an excellent non-linear mapping technique - provides a viable choice for a medium

from which a possible cryptosystem can be based upon. In examining this possibil-

ity, this chapter presents an adaptation of the back-propagation neural network to

a "pseudo" public-key arrangement. Strictly as an initial research, a simple require-

ment of encrypting and decrypting a number representing any character or data is

fulfilled via the network. Following examinations of the network, a key-management

system is then devised. As data are fed to the network in simulation of encrypting

and decrypting, the problems and solutions to the system are discussed. Finally,

a complete top-down block diagram of an entire cryptosystem based on the neural

network of this study is proposed.

A. EXPERIMENTS IMPLEMENTING A NEURAL NET-
WORK IN CRYPTOSYSTEMS

The neural network-based cryptosystem to be designed, a cipher system, re-

quires two basic elements: a key management scheme and an algorithm for two-way

mapping a set of numbers representing data. In this respect, it is fundamentally

not far different than other cryptosystems. The differences surface only in the im-

plementation of mapping. Whereas all existing system such as DES [Ref 231, once

implemented in hardware, maps in a set pattern, a neural network can change its

mapping any time by simply retraining its weights to new data. As it turns out, this

40

deviation from the norm is advantageous since it adds an extra level of protection.

Namely, if the system is compromised, retraining and obtainment of new weights are

neither a difficult nor time-consuming task [Ref 24, 251.

Before the network is presented, some background is in order. The system

of this study is designed to map up to a set of 45 characters for encryption and

decryption. Figure 4.1 is a block diagram of the system. From Figure 4.2 [Ref 26],

the two networks for encryption and decryption are identical systems; they are both

back-propagation networks composed of 4 inputs, 1 output, and three hidden layers

of various sizes.

Prior to proceeding with the explanations of Figure 4.1, it is stressed that this

system is based mainly on the RSA system. As such, it simply takes a number,

encrypts it to another number and decrypts it back. Like RSA, this is all the neural

network is set up to do. For simplicity, this number represents a particular character;

however, the relationship between the number and character is not explored in detail

because this is a subject outside of the focus of this thesis. Furthermore, the input to

the network of this research is only 16 bit in length. Again this is chosen for simplicity

and clarity in an example system. It is not chosen for security. Like RSA in which

system security rests on the key being -numbers greater than 256 bit, the security of

this system also depends upon the range of the input being greater than 256 bit. In

fact, with the input being only 16 bit long, the system can be compromised within

nanoseconds. However, successful cryptoanalysis of 256-bit inputs will be shown in

Section 4.D.1 to take trillion of milleniums. So in order to apply this system to real-

world application, it is preempted that the input range should be increased and the

assignment of a number to character be done separately so as to maximize security.

To clarify Figures 4.1 and 4.2, in order to encrypt, a 16-bit number representing

a character is partitioned into 4 segments so as to provide the 4 4-bit inputs to the

41

Example of Encrypt/Decrypt of Character 2

tA., m a 4-t-Encrypt Training Set--e Output Y3

D - 1eht ray

V -Decrypt Traisln Set

/-a- n 4-Encrypt2

Output Y= Neural Net W2 A
? A _. 5

"Result Xi = 4 7 A D] = -- Character 2

!; ~Note: Messsag N can only be wi/thin a certain rang.e
Sof number which A l used to train the e yt

network. Hence the range of ii must be sent separatelyyin a Deparate P.TLS. (ag).

Figure 4.1: Neural Network As A Cryptosystem Block Diagram

42

H d e

¶i:.'.- i2 j..... . 1- p.... ,,•.:2 .,. .,.H i d d e n 2

".H i d d e n

Figure 4.2: Back-Propagation Network For Encryption and Decryption

encryption network, the output of which is a single 16-bit number different than that

of the original input. These 4 4-bit inputs along with their corresponding 16-bit

output are first fed to the network to train the weights. Once trained, the weights of

the encryption unit would have converged to values such that when these converged

weights are set as constants, the same 4 4-bit inputs used for training will provide

an actual output that can be rounded to the desired output used in training. For

example, if the desired output is 1256 then the actual output must be between 1255.5

and 1256.5 so that rounding to the nearest integer would yield 1256.

Naturally, for a system encrypting up to 45 separate characters, the correspond-

ing training sets will be 45 input/ouput pairs. Basically, this is how the network is

trained and utilized for encryption. It should be noted that whether the input/output

pairs are linearly related or not, the weights should converge and accommodate the

required mapping function.

For decryption, the same type of network, training and mapping scheme will

be used, only this time the recovery of the original data is essential. Intuitively, the

43

input of the decryption unit is the 16-bit output of the encryption network. To keep

the structures of the encryption and decryption networks identical, the encryption

output must be partitioned into 4 4-bit segments before it becomes inputs to be

decrypted. The desired output of the decryption Letwork must then be the original

16 bit input of the encryption network. To clarify the process, the following example

is offered.

Example A:

Given a single processing element with 4 inputs and one output.

The element's function is f(E) = E;

The four input x's= [1 2 A 6116 ; output=12599 = 313716

The four converged encryption weights are found to be [77 1056 501 900] such

that

i(77) + 2(1056) + 10(501) + 6(900) = 12599.

The encryption weights are thus : [77 1056 501 9001.

Since the encrypted output is 313716, the decryption input is [3 1 3 711s

The four converged decryption weights are found to be [290 66 997 121] such

that

3(290) + 1(66) + 3(997) + 7(121) = 4774 = 12A6 16.

The decryption weights are thus : 290 66 997 121. 0

Based on the example, a training set of several encryption and corresponding

decryption numbers can be randomly picked to represent any character. A typical

training set for 28 characters, the upper case alphabet with comma and space, is

shown in Table 4.1.

44

Encryption Decryption
Text Character Hex Rep Dec Rep--- i Encrypted Character Hex Rep Dec Rep
A 12AC 04780 R 321C 12828
B 134E 04942 N 981B 38939
C 214B 08523 P A235 41525
D 2698 09880 S 425A 16986
E 35B7 13751 Q 6533 25907
F 538A 21386 0 A159 4.305
G 6942 26946 L 8731 34609
H 661B 26139 D 2698 09880
I 728D 29325 M 9137 37175
J 7546 30022 H 661B 26139
K 811A 33050 B 134E 04942
L 8731 34609 J 7546 30022
M 9137 37175 C 214B 08523
N 981B 38939 F 538A 21386
O A159 41305 A 12AC 04780
P A235 41525 G 6942 26946
Q 6533 25907 K 811A 33050
R 321C 12828 I 728D 29325
S 425A 16986 E 35B7 13751

.T B366 45926 Z F553 62803
U B129 45353 Y EA54 59988
V C568 50536 space OBCA 03018
W D346 54086 U B129 45353
X D351 54097 W D346 54086
Y EA54 59988 V C568 50536
Z F553 62803 comma 092D 02445
space OBCA 03018 X D351 54097
comma 098D 02445 T B366 45926

TABLE 4.1: EXAMPLE TRAINING SET

45

Notably, the assignment scheme of Table 4.1 is monoalphabetic. This is chosen

strictly for simplicity, not security. The focus of of the neural network is to map a

number to another then recover it. How thc. number might represent a character is

entirely another subject in cryptography. In light of this, using training sets similar

to Table 4.1, experiments were next conducted to support the proposed theory of

using neural networks for a cryptosystem.

B. EXPERIMENTAL RESULTS AND OBSERVATIONS

In order to accommodate the mapping scheme for the proposed cryptosystem,

a series of experiments designed to gauge the performance of the back-propagation

network were carried out. The primary goal of the experiments is the development of

an optimal network based on several parameters. Information such as training time,

error tolerance, range of input numbers, network sizes and their interdependence

are of primary interest in building a working example network for the cryptosystem.

In accomplishing the desired goal, the chosen back-propagation network consists of

4 inputs, 1 output and 3 hidden layers of various sizes. The network is built and

simulated using the Neuralware software package [Ref 26] implemented in an IBM

'486, 50MHz, 16 Mbytes.

Table 4.2 provides the first set of results which are intended to show the re-

lationship between convergence error and training time. For the experiment, a set

of 45 training input/output pairs (45 characters of NTP) along with 4 bit per in-

put (16 bit overall since there are 4 inputs) were used. Error is measured in root

mean squared values (RMS), a common statistical method of error estimation which

is employed by Neuralware. Training time is compared by number of iterations, a

method of measurement used in Neuralware. It should be noted that time of iter-

ations varies for different networks. The larger the network, the time per iteration

46

Number of Elements Iterations -- RMS Error Iterations -- RMS Error

per Hidden Layer
5 2500 0.6 250000 0.5
10 73000 0.0025 300000 0.002
15 70000 0.002 350000 0.00006
20 124500 0.0005 270500 0.0001
25 115570 0.000085 340000 0.000017

TABLE 4.2: TRAINING TIME VS ERROR RELATIONSHIP

increases proportionally.

Conclusions drawn from Table 4.2 concern primarily training time and error.

Comparing the error with iterations to the error, one noted that up to the first set

of iterations, the errors decreased significantly for all networks. After this, the error

goes down significantly less even for a greater increase in iterations. This shows

that after a certain barrier, training of all networks follows the law of diminishing

return wherein the error decreases minimally despite greater increase in training time.

Eventually, when the error has reached its minimum, no amount of training time will

help. This behavior is typical of all neural networks [Ref 24, 25]. After this first

observation, another set of experiments were run and their results are summarized

in Table 4.3. For this experiment, the iterations to convergence were set to 3.5 x l0'

iterations where it was determined that the error was at its minimum for all tested

networks (weights have converged to optimal values). The inputs again are 4 bit each

and 45 input/output pairs were used as training sets.

Clearly from Table 4.3, given the same set of input/ouput, the larger network

results in the least error at final convergence. This is due to the larger amount of

processing elements and weights (memory) available to accommodate the necessary

mapping patterns.

The final experiment intends to formulate the interdependence between network

47

Elements/hidden layer RMS error
5 0.2109
10 7.835 x 10-4

15 3.0836 x 10-5
20 2.492 x 10-5
25 1.684 x 10-5

TABLE 4.3: RELATIONSHIP BETWEEN NETWORK SIZE AND ERROR

size, iterations to convergence, and input size. The results are depicted in Figure 4.3.

The conclusions which can be drawn from Figure 4.3 are:

"* In regards to the range of inputs, as the number of bits per input increases,

the training time increases. Theoretically, this trend can be attributed to the

weights having to accommodate mappings of larger number to smaller ones as

well as the reverse. Namely, as a set of small and large inputs maps to larger

and smaller outputs respectively, the weights have to be small as well as large

if there are not enough weights. This may lead to non-convergence as they can

not be both. This is seen in the-extremely high increase in training time with

the smaller size networks. As the network grows, there are more weights to

map thus there is less strain on the system causing training time to decrease.

"* In regards to the number of input/output pairs to be mapped, as the training

pairs increased to 45 (number of characters in NTP set), the iterations to con-

vergence also increased. This is easily explained by an analogy to the human

brain which is the structure emulated by neural networks. When there is more

information to learn, the brain labors to maximum capacity until its cells are de-

pleted. In the case of neural networks, as the size of the network is exceeded by

the information memory demands, the iterations increase with approximately

no learning. A barrier is reached until more neurons are available.

48

Stiid- 20 elements I hakmen layer

A 104 2 bitper input

Dashed- 30 elements / hidden layer

A Dash doqsua)-40 elements I hidden layer

9
, -. Tanh. Delta Rule

- .. , Lcarning Coeffin 0.01, Momentum- 0.

0 10 20 30 40 50

Chazracter Mapped

$X106 , 3 bit per put 10" 4 bit per input5, 10
xl@4

Characters Mapped Characters Mapped

Figure 4.3: Relationship between Network Size, Iterations to Convergence and Input
Size

49

i A |1 I

e In regards to the size of the network, the relationship to input/output as well

as range of inputs are already described in observations of Table 4.2 and 4.3.

One more observation is added here in that as network size is enlarged for more

training input or input size, the training time increased. Mathematically this

makes sense since there are more weights and neurons (memory) to update.

Each iteration now takes longer to complete.

After thorough exploration of empirical data, the final conclusion is that there

exists a network for the proposed cryptosystem. And it works. After several trials,

the optimal network for this paper's system is found to consist of a 4 bit per input,

4 inputs, 1 output, 3 hidden layers, 25 elements per hidden layer, with 45 sets of

input/output traing pairs. This specific network is used in a conclusive example in

the next section.

C. AN IN-DEPTH EXAMPLE

This example is based on Table 4.1 which in turn is based on the Naval Tacti-

cal Publication coding scheme wherein a character is mapped unto another: A'-4R,

B"4--N... This scheme is chosen for clarity in that an encrypted text will also be a

string of characters. In reality, however, since the characters are coded by a num-

ber, the encrypted text need not be a number representing another character. For

instance, character 'A' encrypts to 5BCF16 where 5BCF16 in this case does not

represent a character in Table 4.1.

This example employs a monoalphabetic substitution scheme to assign a number

to a character. In this respect, this system is vulnerable to single-letter frequency

analysis and is therefore easy to break [Ref 27]. However, if each character is coded

by multiple numbers utilizing schemes such as homophonic or polyalphabetic sub-

stitution (Beale or Vign~re and Beaufort cipher), the safety margin would greatly

50

increase [Ref 27]. Additionally, for real-world application, the input range must be

raised from 16 bit to greater than 256 bit.

As stated in the previous section, this system, based on RSA, is concerned only

with two-way mapping a number to another. Bearing this in mind, this section is

intended only as a pedagogical example of how such a scheme could be implemented

so as to be able to actually encrypt and decrypt a plaintext message. In reality,

for complete security, a separate scheme of assigning numbers to characters must

be chosen to defeat the frequency of letters in plaintext. If interested, the reader is

referred to reference 27 for the assignment of numbers to characters. Moreover, the

range of the network's input must be greater than 256 bit. Having established the

objective of this example, illustrations of the system is hereby offered. The following

plaintext message is encrypted and decrypted using the system of Figure 4.1.

Plaintext: FIND ME COMPLETE CHAOS AND I WILL SHOW YOU SCI-

ENCE

Decimal coded text and encrypted text:

F I I D X 2 C
I I I I I I I

Platintox: 213861293251389391098801030181371751137511030181085231
Encrypted text: 413051371751213861169861640971085231259071540971415251

I I I I I I I I I
0 R F S I C Q I P

0 X P L E T B C H A 0 S
I I I I I I I I I I I I

41305137175l41525134609113751145926113751103018108523126139g04780141306116986
04780108523126946130022125907162803125907154097141525109880112828104780113751

I I I I I I I I I I I I I
A C G J Q Z Q l P D Rt A E

--

A I D V I L LI I I I I I I I
030181047801389391098801030181293251038181540861293251346091346091038181
54097 112828 121386 116986154097 137175 154097 146363 137175 I 30022130022 I 540971

I I I I I I I I I I I I
X R F S X X X U N J J X

51

S H 0 V Y 0 U
I I I I I I I

169861261391413051540861038181599881413051453531038181
137511098801047801453531540971505361047801599881540971

I I I I I I I I I
9 D A U X V A Y I

S C I B N C E
I I I I I I I

16986108523129325113751138939108523113751
13751141525137175125907121386141525125907

I I I I I I I
E P M Q F P Q

Resulting encrypted text:

OMFSXCQXPACGJQZQXPDRAEXRFSXMXUMJJXEDAUXVAYXEPMQFPQ

Additionally, given the monoalphabetic scheme chosen here, in order to guard

against the problem of frequent repetition in the english vocabulary such as the word

the, double patterns U1, nn, tt which can simplify cryptoanalysis, random or strate-

gically placed noise can be added to the encryption via some algorithm. Remember

that since one is using only 28 numbers out of 216 here, there are multitudes of num-

bers left to insert into the above patterns as noise bytes. In this specific example,

the noise is inserted by human intuition and is shown as asterisk (*) signifying any

number not used in coding the characters.

An example of encrypted text with noise inserted:

OMFS*XCQX*PACG*JQZ*QXQDR*AEX*RFSXMXU*MJ**JXE*DAUXV*AYXEPM*QFPQ

With the noise option, one must have a scheme to filter the noise out prior

to entering the decryption network. The decryption network simply recover the

plaintext from the encrypted text as previously discussed. Both the encryption and

decryption networks is subjected to the following parameters:

52

"* Momentum coefficient - 0.300.

"* Learning coefficient = 0.500.

"* Function - Tanh.

"* Learning rule =_ Delta-rule.

"* Size =- 4 inputs, 1 output, 3 hidden layers, 25 elements/layer.

"* The time to minimum acceptable error was approximately 8 hours.

The two networks' (encryption and decryption) data employed for this example

are included in Appendix C.

Clearly, the basis of how to encrypt and docrypt via a neural network is es-

tablished. Based on knowledge of cryptography, the concept of a key must now be

incorporated.

D. KEY MANAGEMENT

Up until present, the method of mapping has been discussed without any men-

tioning of a key. In reality, the key evolves from the actual training process. Namely,

once the training is done, both for encryption and decryption, the converged weights

are the keys. Since different training sets are used (inverse sets), a key for encryption

and another for decryption are required. The keys will change when the network

switch mapping function via new training sets.

For our example of only one training input/ouput pair and one processing el-

ement in Section A (Example A), the keys are [77 1056 501 900] for encryption and

[290 66 997 121] for decryption. The fact that two keys must exist is perhaps clearer

now with the example; however, the fact that this is a one-way scheme only remains

murky. Let's clarify this further. For a specific set of encryption/decryption key that

53

party A obtains from training, party B given the encryption key, can encrypt while

A can decrypt using decryption key. Unless B somehow also obtain the decryption

key (the only safe way to do this is through a secured channel) there is no way for A

to encrypt to B unless B had come up with separate encrypt/decrypt keys of his own

and sent A the encryption key. There is no restriction against both parties using the

same encryption/decryption keys that only one has derived, provided the system is

a secret-key type where the keys can be distributed through safe channels. In this

respect, there is little to gain from a neural network as it is nothing more than an-

other mapping method. But there is much more to the versatility of neural network

which should be exploited.

In the key management scheme thus far mentioned, only one party needs to

train the network and then passes the weights as keys for encrypt and decrypt to his

or her counterpart. However, if both parties were to obtain separate training sets

and thus keys, only the encryption keys need to be exchanged. In this respect, there

exists a "pseudo" public-key scheme which can be exploited since the decryption key

requires no exchange. This possibility is hereby explored.

1. A Proposed Pseudo Public-Key Cryptosystem Using
A Neural Network

Irrefutably in cryptography, the possibility of a pseudo-public-key imple-

mentation of a neural network merits this paper further examination. Currently.

the designed networks mentioned that the keys, the encryption/decryption weights,

can be passed through a secured channel. If a cryptoanalyst has the keys and the

same network, he has broken all codes. Now the assumption is lifted. This research

postulates that if both parties develop their own set of keys, the encryption keys can

be exchanged through any public channel(Figure 4.1). A cryptoanalyst having pos-

54

session of the encryption key, a network, and encrypted data will face an enormous

obstacle in breaking the code: time (in terms of centuries.)

From the forementioned implementation, one recalls that only the encryp-

tion key needs to be exchanged if both parties train on separate data and each obtains

his or her own keys. The decryption key is never divulged. Given the encryption

key E,. and the encrypted message Y a cryptoanalyst must solve an excessively

difficult equation to recover the original input X.

Example D:

Using data from our simple one element one input/output training Example A.

Known to the attacker: Encrypt key (E,) and encrypted code.

r1056
Ee~j. 501

900

encrypted data=31371 6

To solve for the original data, he must solve

77x, + 1056x 2 + 501z 3 + 900z 4 - 313716

with xi being 4 bit,

which is one equation and four unknown. 0

The above example is done on a simple single processing element model with

a simple linear function. Given a multilayer network such as the back-propagation

type with non-linear processing elements, even if the attacker knows the network, the

problem mathematically increases in difficulty since the number of elements grows

and thus the amount of required factorizations grows.

Even with a simple one cell example, for a crude cryptoanalysis method, one

must solve the equation by trying 216 combination of inputs to break one character.

55

Using a crude equation for Table 4.4:
Time in seconds 2 Nu'be of bit loops(1O-9 sec computer/loop) l000computers

Number of input bits per zx Time
4 (this report's element) 0.07 ns
8 4.3 ms
16 213 days
32 1.08 x 1017 centuries
64 3.67 x 1011 centuries

TABLE 4.4: EXHAUSTIVE SEARCH CRYPTOANALYSIS TIME FOR A SINGLE
CELL

On the average it will take less then all combinations as it is probable that the

solution can come anywhere in the search. An exhaustive search of 216 loops for 216

combinations poses little problem with the power of the computer but let's say one

increases the same simple single layer input and output to a 32 -bit, 64-bit , 128-bit,

or 256-bit input. Herein lies the basis behind the security of this system: a large

range for the input of the network. Whereas up until now, only 16-bit inputs were

used in a simple example, when this range is increased to 256 bit, the difficulty of

working with such a large number renders any cryptoanalysis infeasible. Using an

exhaustive search, Table 4.4 shows the amount of total possible time it would take

to break one character given 1000 computers operating at 1 ns per loop operation (a

very generous, fast time).

As with all cryptosystems, the time above can be minimized further if the

system is susceptible to the problem of predictable frequency in the vocabulary.

Namely, when the number representing trends such as 'the', 'a', space, double letters

'11', 'nn' exists, estimation of those characters are made easier. With this system,

there exists a countermeasure in that one could use numbers not mapped to ipject

noise into the transmission thus breaking up any patterns. Here, since only 45 num-

bers are needed to represent 45 characters, there are 216 - 45 random numbers left

56

to be used by some algorithm which would insert them into common words such as

those mentioned above. This possibility was shown earlier in the in-depth example

of Section C.

With the multi-element structure of the back-propagation network, the

cryptoanalysis problem is exponentially greater with increase in number of network

elements. Undoubtedly, the insurmountable time can be decreased given the luck

factor in the probabilities and in due time further development in mathematics can

solve in feasible time the NP complete problem. Nevertheless, at this date, the

postulate is made that this is a very safe public-key cryptosystem.

2. Justification of the "Pseudo" Prefix

Ironically, the restrictions which necessitate the prefix "pseudo" for the

system arise from the same attributes that make the system safe. Given a range of

bits of input x, one cannot use all the possible combinations to train the network.

For example, if each x was 64 bits long, one faces 2 4x" - 2256 possible combinations.

In order to encrypt anything between 0 and 2 21 , all 22" numbers must be matched

to a unique y and trained to the network. This is comparable to the problem of the

cryptoanalyst; it would take trillions of rnilleniums - not feasible.

The solution to this problem is avoidance. One needs only to train a certain

range of number corresponding to the number of characters needed to be encrypted.

For the NTP character set in this proposed system, one needs only a range of 45

out of numbers 216 possible. However, both the encrypter and decrypter must know

this range. How is this range to be kept a secret and still be passed to both parties?

In order to make this neural network completely public-key, another PKS system is

required to pass thi3 range. It is suggested that the already popular Rivest Shamir

Adleman (RSA) PKS system mentioned in Chapter II and III be used to pass this

57

range.

In summary, key management involves the direct public disclosure of the

encryption weights and the indirect public 'disclosure of the range of inputs via the

RSA system. This leads to the question of why not use RSA completely and not be

bothered with the neural network. The answer is that RSA is traditionally slower

compared to neural networks (after training) and since the range of numbers used in

encryption/decryption needs to be exchange only once prior to utilizing the system,

one can afford to use RSA whereas for text encryption, a drawn-out repetitive real-

time process, a neural network is much more efficient [Ref 12, 24].

E. PROBLEMS OF A NEURAL NETWORK AS A CRYP-
TOSYSTEM AND PROPOSED SOLUTIONS

The two potentially detrimental problems with the neural network scheme are

that of the network weights not converging to an acceptable error for some non-

linear training sets (non-convergence) and the mapping not guaranteed to be one to

one (aliasing). Fortunately, the intrinsic versatility of neural networks is such that

solutions to these problems exist.

The more serious of the two problems, non-convergence, can be easily illustrated

by referring back to the one processing cell, one input/output training set example.

With simply one cell, an addition of a second input/ouput pair - if not linearly

related to the first pair - can cause the cell weights not to converge to acceptable

errors; namely, there are no possible set of weights, which will accommodate the

correct outputs for both inputs. For example, the input/ouput pair [2 1 B 6116 and

[0 E F 3116 is added to example 4.A. Using the old convergence weight for the original

input/output, the actual output of the second pair is:

2(77) + 1(1056) + 11(501) + 6(900) = 12, 121 = 2E5916 .

58

Clearly this is not the desired output for the second input. Hence, if one v as to

use the two data set above to train the single cell, the weights would not converge.

One is then left with some restriction as to how to ch-oose training set (mapping func-

tion). This restriction, can be easily exploited by a cryptoanalyst to break the system

as he or she now knows that only certain mapping function is possible given knowl-

edge of the system. Luckily, this restriction can be lifted with the back-propagation

network used in this research.

As previously mentioned in Section A, a back-propagation network is an excel-

lent mapping method of non-linear functions. Relying on this property, the training

sets for encryption and decryption do not need to be linearly related. The more cells

one adds to the network, the more non-linear functions can be mapped. Theoreti-

cally, with enough cells per layers, the weights will converge to acceptable errors given

just any training data [Ref 241. For the non-convergence example above, indeed the

back-propagation network did prove to be the solution.

Additionally for public-key cryptography, one must bear in mind that the train-

ing data for encryption and decryption are related. For it to work, the weights of both

encryption and decryption networks must converge. A training set that converges for

encryption but its inverse training set does not yield converged weights for the decryp-

tion network is otherwise of no use in cryptography. From experimental data of the

proposed 45 character encryption/decryption scheme, using the back-propagation

system, problems of convergence were sometimes encountered. The reader is referred

back to the experimental Section B where it was shown that when non-convergence

does surface, the solution is to add more cells.

Apart from non-convergence, the second problem, aliasing, proved less serious

but still needed to be dealt with. Aliasing occurs when, given a converged weights,

two or more sets of inputs map to the same output. This nuisance can be attributed

59

to the same problem which necessitated the "pseudo" prefix. Since one trains only

a range of inputs within the vast possibility (> 2256), the unused inputs could by

chance map to one of the same chosen outputs.

Example E:

Again reverting back to the one cell, one input/output training set of Example A in

Section A, an input of [1 2 A 6116 along with encryption weights of [77 1056 501 900]

yielded an encrypted code of 12599 = 31371s.

Let's use an input of [714 A]16 and the same converged weights. The encrypted

code for this input will be

7(77) + 1(1056) + 4(501) + 10(900) = 12599 = 31371e,

which is the same output with the original input; hence aliasing has occured. 0

Clearly aliasing is a theoretical possibility and thus a problem; however, in real-

ity it can be easily be avoided by making sure one uses only the trained input/output

pairs for encryption and decryption. This way, one knows exactly that a given en-

cryption output should map back to the desired encryption input during decryption

and not the aliased value. In fact, the alias problem can be exploited to the system's

advantage. If certain aliasing problems are adapted intentionally, cryptoanalysis be-

comes more difficult. As previously explained in the "pseudo" justification section,

only the desired parties knows the range of inputs to use whereas others do not. It

is essential only to choose exact one-to-one mapping pairs in this range to avoid

aliasing. Outside this range, any other inputs can have the aliasing effect, an actual

benefit in extra safety.

60

F. DEVELOPMENT OF A COMPLETE BLOCK-DIAGRAM-
LEVEL HARDWARE SCHEME USING A NEURAL NET-
WORK IN PKS

Up until now, most of the basic building blocks of a PKS using neural network

have been discussed. Gathering all the essential blocks together, a possible block

diagram proposal for an entire cryptosystem is shown in Figure 4.4.

Block by block description of Figure 4.4.

The only component not yet delved into is the automatic generator of training

input/ouput sets. This function can be fulfilled by a linear feedback shift

register (LFSR). Given an input polynomial, it is a simple circuit capable of

generating a random set of different numbers given. For this study, an LFSR of

order 16 is necessary to generate 216 - 1 random numbers for both input/output

pairs of encryption. For further insights on LFSR's, consult reference 28. After

the input/ouput training sets of encryption is established by the LFSR, the

decryption input/ouput training sets must be the inverse; namely ouput and

input of encryption become input and input of decryption, respectively.

"* Decrypt/encrypt neural net- Both networks are of the back-propagation type

composed of 4 inputs , 1 ouput, 3 hidden layers with 25 elements per layer.

"* Input Range Exchange- As discussed in Section D.2, the RSA hardware of

Chapter III can be used to send the range thus making this a "pseudo" PKS.

" Network Weights- The weights of the neural networks must be able to undergo

changes during training and then be set to constants once the the converged

weights are obtained via training or received from opposite parties. Simple

* latches and switches seem adequate for the task although no detail studies are

made.

61

Linear Feedback Shift Regter/
Actmi(Generate Training Sets)

2=00 IIX k (t~raining) Yh

Was RSA
Xk P13 Machine Receive Encrypt Here

Wan----Public Key
I Send Encrypted

Encrypt X ' m Message Here

Network

EncRepted Trainin e
Meesaee Truncate

To Ii ... X a]

Network -Message Here

]private Key •- Wi

Figure 4.4: Neural Network in PKS

62

A working model of a public-key cryptosystem based on neural networks has

been designed. It is merely a sample model which can be applied in limited usage;

however, the idea behind the system deserves recognition as a worthwhile alternative

to PKS.

63

V. CONCLUSION

This thesis has presented some novel approaches to public-key cryptosystems.

The focus was centered on a specific hardware implementation and a completely

new angle to PKS using neural networks. In both issues, research produced working

models when simulated by computers.

The hardware implementation for a modulo reduction unit in a fast exponentia-

tor - an essential device in the most popular PKS, RSA cryptosystem - was developed

based on the sum-of-residues method (SOR). The design is based on the concept

of modularity. The modular unit can be conveniently connected to form a fast ex-

ponentiator for numbers of any length. The result is a working VLSI layout when

simulated by RNL (Appendix C). The efficiency in speed and size, though offered in

the study, remains issues to be considered when the unit is to be used in real-world

applications. If the speed and size given hereby are acceptable to a certain applica-

tion then this unit is perhaps a viable alternative to existing technology due to its

advantage in modularity.

The second part of thi:s thesis involves the use of neural networks in PKS. To

the author's knowledge, the attempt to integrate neural networks into cryptography

is a novel idea. Whether it is either original or even revolutionary remains to be seen.

That the goal is at all plausible is an unanticipated surprise when the experimental

results confirmed it so. This is not to say that plausibility means practicality. So far,

all that is proven is that the concept works. Whether the scheme is feasible needs

further research.

64

From data gathered in Tables 2.4 and 4.4, one can conclude that at 256 bit

in length for the key in RSA and input in the neural network-based cryptosystem,

exhaustive cryptoanalysis faces infeasible time limit. For all practical purpose, re-

quiring trillion of milleniums to break, the system of this thesis is as safe as any

current PKS (Table 4.4). Additionally, the most significant advantage in using neu-

ral networks in PKS is that there is no need for fast exponentiation which has proven

to be slow for large exponents and modulus [Ref 21. The only necessary operations

in a back-propagation network are multiplication, addition and hyperbolic tangent

(or other non-linear functions.) The computational feasibility of the neural network

scheme, however, is not explored here and is left to follow-on research.

At present, the example system only applies for input ranging 16 bit in length.

For the system to be secured, it is suggested that the range be extended to 256 bit.

Intuitively, if one single network is to be used to map numbers with 256 bit range,

it will have to be large and thus will slow down the system. However, if parallel

processing is available and one can afford to design a 256 bit cryptosystem based on

16 16-bit neural networks, the results of this paper will be of value. Furthermore,

only the back-propagation network was used in this research. Given the multitudes

of network types in various applications, there may exist other schemes capable of

using other networks.

This paper is intended to pioneer the idea of neural network in cryptosystem.

As such it claims only the initiative in a novel avenue to cryptography. The proposed

theory of employing neural networks in cryptography now ends with a call for further

research into *he efficiency, speed and possibilities of more capable networks. The

key to the knowledge gathered so far is that a new method is postulated and there

seems to be some merit in that it works with some restrictions. These restrictions

may be lifted by further investigation or perhaps there shall come a disproval which

65

may destroy the entire scheme altogether. Be that as it may, time constraint dictates

that this introductory study terminates with many aspirations of fueling follow-on

research in this subject.

66

APPENDIX A

SUPPLEMENTARY PROGRAMS

The following programs are provided to supplement background knowledge in

public-key cryptography. In order, they are: fast exponentiation, greatest common

divisor, inverse, and factorization. The first three programs are written in C [Ref

2] and run on Unix while factorization is in Matlab code and ran on an IBM '486,

50MHz, 16MB.

This program uses the fast exponential algorithm to compute the operation:

a-z mod n. It is intended as an example of software implementation of the

RSA public key cryptosystem. */

#include <stdio.h>

/* The algorithm is contained in the following function to be called when

necessary. */

int fastexp(a, z, n)

int a, Z, n;

int x = .;

while (z)

67

while (! (z % 2))

{

z I- 2;

a ((an)*(a % n)) %n;

Z--;

X " ((x % n)*(a % n)) % n;

return Wx);

}

main()

{

int a, Z, n, t;

printf("a-z(mod n). Enter a, z, n ");

scanf("'d %d %dO",&a,kz,kn);

t- fastexp(a, z, n);

printf ("Result - %d\n", t);

}

This program uses Euclid's algorithm to solve for the greatest common

denominator (gcd) of two number. Given two input integers, a and n, this

program provides their mutual gcd. This is intended to be an example for

68

generating keys in the RSA public key system */

*include <stdio.h>

main()

{

int gClO0]; /* Initialize an array for gcd */

int ir1i;

printf ("gcd of an. Enter a,n separated by space:");

scanf ("Od UdO", &g[O, kgEI]);

while (gti])

{

gi+1) - gEi-1 % gEi);

i++;

}

printf ("gcd of %d and %d is %d \n",g[O],g[1],g[i-1]);

/* This program compute the inverse, x, of a and n (O<a<n) such that

ax (mod n) = - */

#include <stdio. h>

main()

{

int g[lO0], u[100], v[lO0]; /* Initialize arrays for indexing */

69

iut i-I,; /* Beginning index * of loop *

int y, ra; /* Defining input and intermediate var. *

printf ("inverse of a~n. Enter a;n separated by space:")

scanf ('Vd Wd", &a, kn); /* Read in a and n

g[11' a;

nEal. Mv[l] - 1;

while (g~il)

g~ilu' u~i) * n + v~i) a;

"Y gli-l)/g~i);

g~i+l) - g~i-l) - y*g [ii

U~i+lj - Uri-I] - Y*u Li);

v~i+i) = VUi-l) - y*V~i);

} ~/* Using extension of Euclid's gcd alga *

if (v~i-l) < 0)

printf("inv of %d and %d is %d \n", a,n,v~i-l]+n);

else

printf ("miv of %d and %d is %.d \n",a,n,v~i-1j+2*u);

70

% This is a Matlab program designed to factorize a product of two

% primes for the cryptoanalysis of the RSA public-key cryptosystem.

% Intended merely to show the futility of factorizing large numbers,

% it employs a naive exhaustive search method of dividing and

% checking the remainder of the division of the product and every

% possible odd numbers until a factor is found. To use the program,

% simply type rsafac(product of 2 primes').

function[x]ursafac(z); % Enter the product.

w=round(sqrt(z)); % Factor can not be larger than

% the square root of the product.

for n-l:2:w % No need to test even numbers, and

% limit of search is v.

v-z/n; % Testing by dividing products by

% odd numbers.

if (rem(v,1)==O) %, If v is integer then

Xz'n,v]; % n and v are factors.

n-w; %. Exit loop once factors are found

end

end

71

APPENDIX B

RNL SIMULATION OF MODULO
REDUCTION UNIT

The following examples are indicative of the successful RNL simulation [Ref 3]

of the final modulo reduction unit. The unit simulated here is limited to modulo

numbes of 4-bit length. The RNL control file, stimulation file for one example are

included along with simulation results of 5 modulo operations.

Sample control file for RNL simulation of 5 mod 7 using modulo reduction

layout of .Figure 3.11.

The name of this control file for rnl is: modl.l

Simulation for modulo reduction unit of Chapter 3.

LOAD STANDARD LIBRARY ROUTINES

(load "uvstd.i")

(load "uwsim. 1')

FILE WHICH WILL LOG THE RESULTS

(log-file r'modl .rlog")

; READ IN THE BINARY NETWORK FILE

(read-network "rmod1")

; DEFINE THE TIME SCALE FOR SIMULATION

(setq incr 90)

; DEFINE INPUT VECTOR IF ANY, standard STYLE

(defvec '(bit state s3 s2 sl sO))

72

DEFINE INPUT VECTOR IF ANY, SINGLE INDEX STYLE

DEFINE INPUT VECTOR IF ANY, double index STYLE

STANDARD REPORT FORMAT DEFINITION.

(def-report '("response- " cl1 c12 in i3 i2 il (vec state)))

PLOTFILE SPECIFIED

openplot "'mod1.beh"

LOGIC ANALYZER STYLE OUTPUT FORMAT SELECTION.

(setq lanalyze t)

(yr-format)

; GLITCH DETECTOR SELECTION.

(setq glitch-detect t)

; NODE TRANSIENTS REPORT DEFINITION.

(chflag '(s3 s2 sl sO))

TRIGGER CONDITION SET-UP

ADDITIONAL SIMULATION SET-UP COMMAND LINES.

(printf "Commence simulation.. .\n")

; SPECIFICATION OF A TIME/BASENAME FILE FOR INCLUSION.

(load "mod1.time")

ADDITIONAL WRAP-UP COMMAND LINES.

(printf "...completed simulation!\n")

exit

GEN-CONTROL COMPLETED.

;The following is the stimulation file for the input to the rnl simu' :;ion

;above for 5 mod 7.

Sample < >.stim file for 5 mod 7:

73

timo.range 0 10

in 0 h 0 1 2 h 4 ;Note 101 is entered for 5

inn 0 1 0 h 2 1 4 ; Simply inverse of in

cll 2 1 0 h I ; 2-phase clocks

clin 2 h 0 1 1

c12 2 h 0 1 1

cl2n 2 1 0 h I

opt 0 h 0 x I Initializing MUX select

optn 0 1 0 x 1

mO 0 h 0; 2's complement of 7 is 1001

ml 0 1 0 Modulo number inputs

m2 0 1 0

m3 0 h 0

s3 0 1 0 x 1; Initializing summer

s2OlOl --

slOlOx1

sOOlOzi

i3 0 1 0 x I; Initializing 1st residue to I

i2010xl

ilOhOxI

74

report 1 0

;The following is the RNL simulation result of stimulation file above

;5 mod 7 :

; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56 dep=0

;low-power-0 pullup-0 resistor-O

Report format of logic analyzer style output

time cli c12 in i3 i2 il state(result)

Commence simulation...

9 0 1 1 0 0 1 0000

18 1 0 1 0 0 1 0001 - 1stc .! e

27 0 1 0 0 1 0 0001

36 1 0 0 0 1 0 0001 - 2nd clk pulse

45 0 1 1 1 0 0 0001

54 1 0 1 1 00 0101 - 3rd clk pulse***

63 0 1 1 0 0 1 0101

... completed simulation!

* Input is 101= 5 (Note input taken at each rising clock edge.)

** Residues are 1,2,4,1,2,4... for mod 7.

*** 5 mod 7 a 0101- 5.

75

aIm M ao mim i il n mmmIllý u

;The following is a second RNL simulation result (10 mod 6):

; 118 nodes, transistors: enh-68 intrinsic-0 p-chan-56

;dep-0 low-power-O pullup-O resistor-O

Report format of logic analyzer style output

time Cll c12 in i3 i2 il state(result)

Commence simulation...

9 0 1 0 0 0 1 0000

18 1 0 0 0 0 1 0000 - lst clk pulse

27 0 1 1 0 1 0 0000

36 1 0 1 0 1 0 0010 - 2nd clk pulse

45 0 1 0 1 0 0 0010

54 1 0 0 1 0 0 0010 - 3rd clk pulse

63 0 1 1 0 1 0 0010

72 1 0 1 0 1 0 0100 - 4th clk pulse***

... completed simulation!

*Input is 1010- 10.

** Residues are 1,2,4... for mod 7.

*** 10 mod 6 - 0100- 6.

;Third RNL simulaLion using 10 mod 7:

; 118 nodes, transistors: enh-68 intrinsic-0 p-chan=56

; dep-0 low-power-O pullup-0 resistor=O

76

; Report format of logic analyzer style output

time cl c12 in i3 i2 il state(result)

Commence simulation...

9 0 1 0 0 0 1 0000

18 1 0 0 0 0 1 0000 - 1st clk pulse

27 0 1 1 0 1 0 0000

36 1 0 1 0 1 0 0010 - 2nd clk pulse

45 0 1 0 1 0 0 0010

54 1 0 0 1 0 0 0010 - 3rd clk pulse

63 0 1 1 0 0 1 0010

72 1 0 1 0 0 1 0011 - 4th clk pulse***

-. completed simulation!

* Input is 1010- 10.

** Residues for mod 7 is 1,2,4,1,2,4...

**10 mod 7- 0011 a 3.

; Fourth RNL simulation using 11 mod 6.

; 118 nodes, transistors: enh=68 intrinsic=O p-chan=56

; dep-O low-powerO pullup=O resistor-O

; Report format of logic analyzer style output

time cl c12 in i3 i2 ii state(result)

Commence simulation...

77

9 0 1 1 0 0 1 0000

18 1 0 1 0 0 1 0001 - 1st clk pulse

27 0 1 1 0 1 0 0001

36 1 0 1 0 1 0 0011 - 2nd clk pulse

45 0 1 0 1 0 0 0011

54 1 0 0 1 0 0 0011 - 3rd clk pulse

63 0 1 1 0 1 0 0011

72 1 0 1 0 1 0 0101 - 4th clk pulse***

81 0 1 1 1 0 0 0101

... completed simulation!

* input is 1011- 11.

** Residues of mod 6 are 1,2,4,2,4...

*** 11 mod 6- 0101- 5

Fifth RNL simulation with 17 mod 5

118 nodes, transistors: enh-68 intrinsic=0 p-chan=56

dep-O low-power-O pullup-O resistor0O

Report format of logic analyzer style output

time cl1 c12 in i3 i2 il state(result)

Commence simulation...

9 0 1 1 0 0 1 0000

18 1 0 1 0 0 1 0001 - 1st clk pulse

78

27 0 1 0 0 1 0 0001

36 1 0 0 0 1 0 0001 - 2nd clk pulse

45 0 1 0 1 0 0 0001

54 1 0 0 1 0 0 0001 - 3rd clk pulse

63 0 1 0 0 1 1 0001

72 1 0 0 0 1 1 0001 - 4th clk pulse

81 0 1 1 0 0 1 0001

90 1 0 1 0 0 1 0010 - 5th cik pulse***

99 0 1 1 0 1 0 0010

... completed simulation!

* Input is 10001= 17.

** Residues of mod 5 are 1,2,4,3,1,2,4,3...

*** 17 mod 5=0010 2.

79

APPENDIX C

SAMPLE NEURAL NETWORK FROM
NEURALWARE

The following is data for the encryption and decryption neural network used in

Chapter IV in-depth example. The network data is formatted from Neuralware [Ref

26] "annotated" option once convergence is reached. This option piovides all the

necessary parameters to reconstruct the network trained by data from Table 4.1. Of

the many parameters, those of interest are learning iterations (375642 for encryption

and 333877 for decryption), error function (standard = hyperbolic tangent), learning

rule (delta-rule), and the processing elements' data. Of the element's data. the error

for each element's output was approximately zero once convergence is reached. The

weight data are not included other than the number of weights going to each element.

The reason for this omission is that it is not pertinent. With the data offered here

and Table 4.1, one can reconstruct the encryption and decryption network using

Neuralware.
Title: Encryption Network for In-Depth Example

Display Mode: Network Type: Hetero-Associative
Control Strategy: backprop L/R Schedule: backprop

375642 Learn 0 Recall 0 Layer
16 Aux 1 0 Aux 2 0 Aux 3

L/R Schedule: backprop
Recall Step 1 0 0 0 0

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000Gain 1.0000 0.0000 0.0000 0.0000 0.0000Gain 1.0000 0.0000 0.0000 0.0000 0.0000
LearnStep 5000 0 0 0 0

Coefficient 1 0.9000 0.0000 0.0000 0.0Q00 0.0000
Coefficient 2 0.6000 0.0000 0.0000 0.0000 0.0000
Coefficient 3 0.0000 0.0000 0.0000 0.0000 0.0000

10 Parameters
Learn Data: File Rand. (Encryption file here) Binary

Recall Data: File Seq. (Encryption file here)

80

Result File: Desired Output, Output
UserIO Program: userio

I/P Ranges: -1.0000, 1.0000
O/P Ranges: -0.8000, 0.8000

I/P Start Col: 1 MinMax Table: sama
O/P Start Col: 5 Number of Entries: 5

MinMax Table <sama>:
Col: 1 2 3 4 5
Min: 0.0000 1.0000 1.0000 1.0000 2445.0000
Max: 15 11 12 14 6.28e+004
Layer: 1

PEs: 1 Wgt Fields: 2 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: -- None--
Init Low: -0.100 Init High: 0.100 L/R Schedule: (Network)
Winner 1: None Winner 2:' None
PE: Bias

1.000 Err Factor 0.000 Desired
0.000 Sum 1.000 Transfer 1.000 Output

0 Weights -291.920 Error 0.000 Current Error
Layer: In

PEs: 4 Wgt Fields: 1 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: -- None--
Init Low: -0.100 Init High: 0.100 L/R Schedule: (Network)

Winner 1- None Winner 2: None
PE: 2

1.000 Err Factor -0.867 Desired
-0.867 Sum -0.867 Transfer -0.867 Output

0 Weights 0.000 Error 0.000 Current Error
* From here on all error for all PE's are 0's.

PE: 3
1.000 Err Factor -0.800 Desired

-0.800 Sum -0.800 Transfer -0.800 Output
PE: 4

1.000 Err Factor 0.636 Desired
0.636 Sum 0.636 Transfer 0.636 Output

PE: 5
1.000 Err Factor 0.692 Desired
0.692 Sum 0.692 Transfer 0.692 Output

Layer: Hiddenl
PEs: 25 Wgt Fields: 2 Sum: Sum

Spacing: 5 F' offset: 0.00 Transfer: TanH
Shape: Square Output: Direct

Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: hiddeni

Winner 1: None Winner 2: None
L/R Schedule: hiddeni

Recall Step 1 0 0 0 0
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

81

Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Learn Step 10000 30000 70000 150000 310000

Coefficient 1 0.3000 0.1800 0.0648 0.0084 0.0001
Coefficient 2 0.3000 0.1800 0.0648 0.0084 0.0001
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 6
1.000 Err Factor 0.000 Desired
0.044 Sum 0.044. Transfer 0.044 Output

5 Weights 0.000 Error 0.000 Current Error
* From here on all weights are 5 and errors are 0.

PE: 7
1.000 Err Factor 0.000 Desired
0.612 Sum 0.546 Transfer 0.546 Output

PE: 8
1.000 Err Factor 0.000 Desired

-0.123 Sum -0.123 Transfer -0.123 Output
PE: 9

1.000 Err Factor 0.000 Desired
0.500 Sum 0.462 Transfer 0.462 Output

PE: 10
1.000 Err Factor 0.000 Desired

-1.634 Sum -0.927 Transfer -0.927 Output
PE: 11

1.000 Err Factor 0.000 Desired
-0.069 Sum -0.069 Transfer -0.069 Output

PE: 12
1.000 Err Factor 0.000 Desired
0.145 Sum 0.144 Transfer 0.144 Output

PE: 13
1.000 Err Factor 0.000 Desired

-0.008 Sum -0.008 Transfer -0.008 Output
PE: 14

1.000 Err Factor 0.000 Desired
-0.305 Sum -0.296 Transfer -0.296 Output

PE: 15
1.000 Err Factor 0.000 Desired

-0.045 Sum -0.045 Transfer -0.045 Output
PE: 16

1.000 Err Factor 0.000 Desired
-0.376 Sum -0.359 Transfer -0.359 Output

PE: 17
1.000 Err Factor 0.000 Desired

-0.037 Sum -0.037 Transfer -0.037 Output
PE: 18

1.000 Err Factor 0.000 Desired
-2.242 Sum -0.978 Transfer -0.978 Output

PE: 19
1.000 Err Factor 0.000 Desired
0.023 Sum 0.023 Transfer 0.023 Output

PE: 20
1.000 Err Factor 0.000 Desired
0.228 Sum 0.224 Transfer 0.224 Output

PE: 21
1.000 Err Factor 0.000 Desired

-2.312 Sum -0.981 Transfer -0.981 Output
PE: 22

82

1.000 Err Factor 0.000 Desired
1.274 Sum 0.855 Transfer 0.855 Output

PE: 23
1.000 Err Factor 0.000 Desired
0.031 Sum 0.031 Transfer 0.031 Output

PE: 24
1.000 Err Factor 0.000 Desired
0.029 Sum 0.029 Transfer 0.029 Output

PE: 25
1.000 Err Factor 0.000 Desired
0.816 Sum 0.673 Transfer 0.673 Output

PE: 26
1.000 Err Factor 0.000 Desired

-0.286 Sum -0.279 Transfer -0.279 Output
PE: 27

1.000 Err Factor 0.000 Desired
-0.299 Sum -0.290 Transfer -0.290 Output

PE: 28
1.000 Err Factor 0.000 Desired
1.650 Sum 0.929 Transfer 0.929 Output

PE: 29
1.000 Err Factor 0.000 Desired
0.891 Sum 0.712 Transfer 0.712 Output

PE: 30
1.000 Err Factor 0.000 Desired
0.440 Sum 0.414 Transfer 0.414 Output

Layer: Hidden2
PEs: 25 Wgt Fields: 2 Sum: Sum

Spacing: 5 F' offset: 0.00 Transfer: TanH
Shape: Square Output: Direct

Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: hidden2
Winner 1: None Winner 2: None

L/R Schedule: hidden2
Recall Step 1 0 0 0 0

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.2500 0.1500 0.0540 0.0070 0.0001
Coefficient 2 0.3000 0.1800 0.0648 0.0084 0.0001
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 31
1.000 Err Factor 0.000 Desired
0.221 Sum 0.218 Transfer 0.218 Output

***26 Weights -0.000 Error -0.000 Current Error
* From here on all PE's have 26 weights, approximately 0 error.

PE: 32
1.000 Err Factor 0.000 Desired

-1.459 Sum -0.897 Transfer -0.897 Output
PE: 33

1.000 Err Factor 0.000 Desired
-2.230 Sum -0.977 Transfer -0.977 Output

PE: 34
1.000 Err Factor 0.000 Desired

83

-0.297 Sum -0.288 Transfer -0.288 Output
PE: 35

1.000 Err Factor 0.000 Desired
-0.168 Sum -0.167 Transfer -0.167 Output

PE: 36
1.000 Err Factor 0.000 Desired
0.315 Sum 0.305 Transfer 0.305 Output

PE: 37
1.000 Err Factor 0.000 Desired
1.152 Sum 0.818 Transfer 0.818 Output

PE: 38
1.000 Err Factor 0.000 Desired

-0.165 Sum -0.164 Transfer -0.164 Output
PE: 39

1.000 Err Factor 0.000 Desired
-1.256 Sum -0.850 Transfer -0.850 Output

PE: 40
1.000 Err Factor 0.000 Desired

-0.520 Sum -0.477 Transfer -0.477 Output
PE: 41

1.000 Err Factor 0.000 Desired
-1.282 Sum -0.857 Transfer -0.857 Output

PE: 42
1.000 Err Factor 0.000 Desired
2.801 Sum 0.993 Transfer. 0.993 Output

PE: 43
1.000 Err Factor- 0.000 Desired
0.082 Sum 0.081 Transfer 0.081 Output

PE: 44
1.000 Err Factor 0.000 Desired

-2.658 Sum -0.990 Transfer -0.990 Output
PE: 45

1.000 Err Factor 0.000 Desired
4.263 Sum 1.000 Transfer 1.000 Output

PE: 46
1.000 Err Factor 0.000 Desired

-0.159 Sum -0.158 Transfer -0.158 Output
PE: 47

1.000 Err Factor 0.000 Desired
-0.068 Sum -0.068 Transfer -0.068 Output

PE: 48
1.000 Err Factor 0.000 Desired

-0.707 Sum -0.609 Transfer -0.609 Output
PE: 49

1.000 Err Factor 0.000 Desired
-0.527 Sum -0.483 Transfer -0.483 Output

PE: 50
1.000 Err Factor 0.000 Desired

-3.316 Sum -0.997 Transfer -0.997 Output
PE: 51

1.000 Err Factor 0.000 Desired
-1.019 Sum -0.770 Transfer -0.770 Output

FE: 52
1.000 Err Factor 0.000 Desired
0.934 Sum 0.733 Transfer 0.733 Output

PE: 53

84

1.000 Err Factor 0.000 Desired
-0.033 Sum -0.033 Transfer -0.033 Output

PE: 54
1.000 Err Factor 0.000 Desired

-2.768 Sum -0.992 Transfer -0.992 Output
PE: 55

1.000 Err Factor 0.000 Desired
0.017 Sum 0.017 Transfer 0.017 Output

Layer: Hidden3
PEs: 25 Wgt Fields: 2 Sum: Sum

Spacing: 5 F' offset: 0.00 Transfer: TanH
Shape: Square Output: Direct

Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: hidden3
Winner 1: None Winner 2: None

L/R Schedule: hidden3
Recall Step 1 0 0 0 0

Firing Density 00.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.2000 0.1200 0.0432 0.0056 0.0001
Coefficient 2 0.3000 0.1800 0.0648 0.0084 0.0001
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 56
1.000 Err Factor 0.000 Desired
0.421 Sum 0.398 Transfer 0.398 Output

PE: 57
1.000 Err Factor 0.000 Desired

-0.212 Sum -0.209 Transfer -0.209 Output
PE: 58

1.000 Err Factor 0.000 Desired
0.145 Sum 0.144 Transfer 0.144 Output

PE: 59
1.000 Err Factor 0.000 Desired

-0.139 Sum -0.138 Transfer -0.138 Output
PE: 60

1.000 Err Factor 0.000 Desired
-0.209 Sum -0.206 Transfer -0.206 Output

PE: 61
1.000 Err Factor 0.000 Desired
0.137 Sum 0.136 Transfer 0.136 Output

PE: 62
1.000 Err Factor 0.000 Desired
0.151 Sum 0.150 Transfer 0.150 Output

PE: 63
1.000 Err Factor 0.000 Desired

-0.306 Sum -0.297 Transfer -0.297 Output
PE: 64

1.000 Err Factor 0.000 Desired
0.669 Sum 0.584 Transfer 0.584 Output

PE: 65
1.000 Err Factor 0.000 Desired

-0.153 Sum -0.152 Transfer -0.152 Output

PE: 66
1.000 Err Factor 0.000 Desired

-0.436 Sum -0.410 Transfer -0.410 Output
PE: 67

1.000 Err Factor 0.000 Desired
-0.086 Sum -0.086 Transfer -0.086 Output

PE: 68
1.000 Err Factor 0.000 Desired
0.082 Sum 0.082 Transfer 0.082 Output

PE: 69
1.000 Err Factor 0.000 Desired

-0.108 Sum -0.108 Transfer -0.108 Output
PE: 70

1.000 Err Factor 0.000 Desired
0.071 Sum 0.071 Transfer 0.071 Output

PE: 71
1.000 Err Factor 0.000 Desired
0.181 Sum 0.179 Transfer 0.179 Output

PE: 72
1.000 Err Factor 0.000 Desired
0.233 Sum 0.229 Transfer 0.229 Output

PE: 73
1.000 Err Factor 0.000 Desired

-0.244 Sum -0.239 Transfer -0.239 Output
PE: 74

1.000 Err Factor 0.000 Desired
0.378 Sum 0.361 Transfer 0.361 Output

PE: 75
1.000 Err Factor 0.000 Desired

-0.318 Sum -0.308 Transfer -0.308 Output
PE: 76

1.000 Err Factor 0.000 Desired
-0.484 Sum -0.449 Transfer -0.449 Output

PE: 77
1.000 Err Factor 0.000 Desired
0.128 Sum 0.127 Transfer 0.127 Output

PE:- 78
1.000 Err Factor 0.000 Desired

-0.047 Sum -0.047 Transfer -0.047 Output
PE: 79

1.000 Err Factor 0.000 Desired
-0.379 Sum -0.361 Transfer -0.361 Output

PE: 80
1.000 Err Factor 0.000 Desired
0.647 Sum 0.569 Transfer 0.569 Output

Layer: Out
PEs: 1 Wgt Fields: 2 Sum: Sum

Spacing: 5 F' offset: 0.00 Transfer: TanH
Shape: Square Output: Direct

Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule

Init Low: -0.100 Init High: 0.100 L/R Schedule: out
Winner 1: None Winner 2: None

L/R Schedule: out
Recall S ep 1 0 0 0 0

input Clamp 0.0000 0.0000 0.0000 0.0000 0.0000

86

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 15000C 310000
Coefficient 1 0.1500 0.0900 0.0324 0.0042 0.0001
Coefficient 2 0.3000 0.1800 0.0648 0.0084 0.0001
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 81
1.000 Err Factor -0.525 Desired

-0.583 Sum -0.525 Transfer -0.525 Output
26 Weights 0.000 Error 0.000 Current Error

Resulting actual output and desired output for encryption after
convergence in accordance with Table 4.1 input:

Desired: Actual:
12828.000000 12827.522461
38939.000000 38939.464844
41525.000000 41524.664063
16986.000000 16985.642188
25907.000000 25907.292969
41305.000000 41304.957031
34609.000000 34609.128906
9880.000000 9880.100586
37175.000000 37175.384375
26139.000000 26138.814453
4942.000000 4942.453223
30022.000000 30021.833984
8523.000000 8523.165039
21386.000000 21385.605469
4780.000000 4779.714844
26946.000000 26946.346094
33050.000000 33050.152344
29325.000000 29324.822266
13751.000000 13750.862305
62803.000000 62803.332031
59988.000000 59987.847656
3018.000000 3017.878906
45353.000000 45353.355469.
54086.000000 54086.285156
50536.000000 50536.437500
2445.000000 2445.414014
54097.000000 54097.246094
45926.000000 45926.305469

Title: Decryption Network for In--Depth Example of Chapter 4
Display Mode: Network Type: Hetero-Associative

Display Style: default
Control Strategy: backprop L/R Schedule: backprop

333877 Learn 0 Recall 0 Layer
16 Aux 1 0 Aux 2 0 Aux 3

L/R Schedule: backprop
Recall Step 1 0 0 0 0

87

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 "0.0000 0.0000

Learn Step 5000 0 0 0 0
Coefficient 1 0.9000 0.0000 0.0000 0.0000 0.0000
Coefficient 2 0.6000 0.0000 0.0000 0.0000 0.0000
Coefficient 3 0.0000 0.0000 0.0000 0.0000 0.0000

10 Parameters
Learn Data: File Rand. (decryption file) Binary

Recall Data: File Seq. (decryption)
Result File: Desired Output, Output

UserIO Program: userio
I/P Ranges: -1.0000, 1.0000
O/P Ranges: -0.8000, 0.8000

I/P Start Col: 1 MinMax Table: samb
O/P Start Col: 5 Number of Entries: 5

MinMax Table <samb>:
Col: 1 2 3 4 5
Min: 0.0000 1.0000 1.0000 1.0000 2445.0000
Max: 15 11 12 14 6.21e+004
Layer: 1

PEs: 1 Wgt Fields: 2 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: -- None--
Init Low: -0.100 Init High: 0.100 L/R Schedule: (Network)

Winner 1: None Winner 2: None
PE: Bias

1.000 Err Factor 0.000 Desired ...
0.000 Sum 1,000 Transfer 1.000 Output

0 Weights -247.657 Error 0.000 Current Error
Layer: In

PEs: 4 Wgt Fields: 1 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: Linear

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: -- None--
Init Low: -0.100 Init High: 0.100 L/R Schedule: (Network)

Winner 1: None Winner 2: None
PE: 2

1.000 Err Factor 0.333 Desired
0.333 Sum 0.333 Transfer 0.333 Output

*** 0 Weights 0.000 Error 0.000 Current Error
* Repeat for PE's here on, 0 weights, 0 error.

PE: 3
1.000 Err Factor -1.000 Desired

-1.000 Sum -1.000 Transfer -1.000 Output
PE: 4

1.000 Err Factor -0.273 Desired
-0.273 Sum -0.273 Transfer -0.273 Output

PE: 5
1.000 Err Factor 0.231 Desired
0.231 Sum 0.231 Transfer 0.231 Output

Layer: Hiddenl
PEs: 25 Wgt Fields: 2 Sum: Sum

Spacing: 5 F' offset: 0.00 Transfer: TanH

88

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: hiddenl
Winner 1: None Winner 2: None

L/R Schedule: hiddenl
Recall Step 1 0 0 0 0

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 2 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 6
1.000 Err Factor 0.000 Desired
1.734 Sum 0.940 Transfer 0.940 Output

* 5 Weights -0.000 Error -0.000 Current Error
* Repeat for PE's from here on, 5 weights, nearly 0 error.

PE: 7
1.000 Err Factor 0.000 Desired

-2.111 Sum -0.971 Transfer -0.971 Output
PE: 8

1.000 Err Factor 0.000 Desired
-0.297 Sum -0.289 Transfer -0.289 Output

PE: 9
1.000 Err Factor 0.000 Desired
0.912 Sum 0.722"Transfer 0.722 Output

PE: 10
1.000 Err Factor 0.000 Desired

-0.258 Sum -0.252 Transfer -0.252 Output
PE: 11

1.000 Err Factor 0.000 Desired
-0.159 Sum -0.158 Transfer -0.158 Output

PE: 12
1.000 Err Factor 0.000 Desired
0.169 Sum 0.168 Transfer 0.168 Output

PE: 13
1.000 Err Factor 0.000 Desired

-0.342 Sum -0.330 Transfer -0.330 Output
PE: 14

1.000 Err Factor 0.000 Desired
0.677 Sum 0.589 Transfer 0.589 Output

PE: 15
1.000 Err Factor 0.000 Desired

-1.055 Sum -0.784 Transfer -0.784 Output
PE: 16

1.000 Err Factor 0.000 Desired
-0.215 Sum -0.212 Transfer -0.212 Output

PE: 17
1.000 Err Factor 0.000 Desired
1.487 Sum 0.903 Transfer 0.903 Output

PE: 18
1.000 Err Factor 0.000 Desired

-0.250 Sum -0.245"Transfer -0.245 Output
PE: 19

89

1.000 Err Factor 0.000 Desired
0.158 Sum 0.156 Transfer 0.156 Output

PE: 20
1.000 Err Factor 0.000 Desired
1.666 Sum 0.931 Transfer 0.931 Output

PE: 21
1.000 Err Factor 0.000 Desired

-2.920 Sum -0.994 Transfer -0.994 Output
PE: 22

1.000 Err Factor 0.000 Desired
0.136 Sum 0.135 Transfer 0.135 Output

PE: 23
1.000 Err Factor 0.000 Desired
0.118 Sum 0.117 Transfer 0.117 Output

PE: 24
1.000 Err Factor 0.000 Desired

-0.597 Sum -0.535 Transfer -0.535 Output
PE: 25

1.000 Err Factor 0.000 Desired
0.154 Sum 0.153 Transfer 0.153 Output

PE: 26
1.000 Err Factor 0.000 Desired
0.203 Sum 0.201 Transfer 0.201 Output

PE: 27
1.000 Err Factor 0.000 Desired

-1.358 Sum -0.876 Transfer -0.876 Output
PE: 28

1.000 Err Factor 0.000 Desired
0.508 Sum 0.466 2ransfer 0.468 Output

PE: 29
1.000 Err Factor 0.000 Desired

-1.887 Sum -0.955 Transfer -0.955 Output
PE: 30

1.000 Err Factor 0.000 Desired
0.345 Sum 0.332 Transfer 0.332 Output

Layer: Hidden2
PEs: 25 Wgt Fields: 2 Sum: Sum

Spacing: 5 F' offset: 0.00 Transfer: TanH
Shape: Square Output: Direct

Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: hidden2
Winner 1: None Winner 2: None

L/R Schedule: hidden2
Recall Step 1 0 0 0 0

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.2500 0.1250 0.0313 0.0020 0.0000
Coefficient 2 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 3 0.10C0 0.1000 0.1000 0.1000 0.1000

PE: 31
1.000 Err Factor 0.000 Desired

-4.909 Sum -1.000 Transfer -1.000 Output
26 Weights -0.000 Error -0.000 Current Error

90

Repeat for PE's here on, 26 weights, nearly 0 error.
PE: 32

1.000 Err Factor 0.000 Desired
-1.085 Sum -0.795 Transfer -0.795 Output

PE: 33
1.000 Err Factor 0.000 Desired
3.423 Sum 0.998 Transfer 0.998 Output

PE: 34
1.000 Err Factor 0.000 Desired
3.539 Sum 0.998 Transfer 0.998 Output

PE: 35
1.000 Err Factor 0.000 Desired
0.414 Sum 0.392 Transfer 0.392 Output

PE: 36
1.000 Err Factor 0.000 Desired

-1.279 SuRI -C.855 TLaifsz -0.8b6 Output
PE: 37

1.000 Err Factor 0.000 Desired
1.820 Sum 0.949 Transfer 0.949 Output

PE: 39
1.000 Err Factor 0.000 Desired
3.687 Sum 0.999 Transfer 0.999 Output

PE: 39
1.000 Err Factor 0.000 Desired
1.271 Sum 0.854 Transfer 0.854 Output

PE: 40
1.000 Err Factor 0.000 Desired

-0.379 Sum -0.362 Transfer -0.362 Output
PE: 41

1.000 Err Factor 0.000 Desired
0.636 Sum 0.563 Transfer 0.563 Output

PE: 42
1.000 Err Factor 0.000 Desired

-0.823 Sum -0.677 Transfer -0.677 Output
PE: 43

1.000 Err Factor 0.000 Desired
0.619 Sum 0.550 Transfer 0.550 Output

PE: 44
1.000 Err Factor 0.000 Desired

-1.500 Sum -0.905 Transfer -0.905 Output
PE: 45

1.000 Err Factor 0.000 Desired
2.516 Sum 0.987 Transfer 0.987 Output

PE: 46
1.000 Err Factor 0.000 Desired
1.206 Sum 0.836 Transfer 0.836 Output

PE: 47
1.000 Err Factor 0.000 Desired
0.972 Sum 0.750 Transfer 0.750 Output

PE: 48
1.000 Err Factor 0.000 Desired
1.743 Sum 0.941 Transfer 0.941 Output

PE: 49
1.000 Err Factor 0.000 Desired

-1.517 Sum -0.908 Transfer -0.908 Output
PE: 50

91

1.000 Err Factor 0.000 Desired
0.166 Sum 0.165 Transfer 0.165 Output

PE: 51
1.000 Err Factor 0.000 Desired
0.270 Sum 0.264 Transfer 0.264 Output

PE: 52
1.000 Err Factor 0.000 Desired
0.125 Sum 0.124 Transfer 0.124 Output

PE: 53
1.000 Err Factor 0.000 Desired

-1.336 Sum -0.871 Transfer -0.871 Output
PE: 54

1.000 Err Factor 0.000 Desired
-0.958 Sum -0.744 Transfer -0.744 Output

PE: 55
1.000 Err Factor 0.000 Desired
0.533 Sum 0.488 Transfer 0.488 Output

Layer: Hidden3
PEs: 25 Wgt Fields: 2 Sum: Sum

Spacing: 5 F offset: 0.00 Transfer: TanH
Shape: Square Output: Direct

Scale: 1.00 Low Limit: -9999.00 Error Func: standard
Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: hidden3

Winner 1: None Winner 2: None
L/R Schedule: hidden3

Recall Step 1 0 0 0 0
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 1')000 30000 70000 150000 310000
Coefficient 1 0.2000 0.1000 0.0250 0.0016 0.0000
Coefficient 2 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 56
1.000 Err Factor 0.000 Desired
0.824 Sum 0.677 Transfer 0.677 Output

26 Weights -0.000 Error -0.000 Current Error
* Repeat for PE's here on, 26 weights, nearly 0 error.

PE: 57
1.000 Err Factor 0.000 Desired
0.328 Sum 0.317 Transfer 0.317 Output

PE: 58
1.000 Err Factor 0.000 Desired

-0.132 Sum -0.131 Transfer -0.131 Output
PE: 59

1.000 Err Factor 0.000 Desired
-0.035 Sum -0.035 Transfer -0.035 Output

PE: 60
1.000 Err Factor 0.000 Desired

-0.120 Sum -0.120 Transfer -0.120 Output
PE: 61

1.000 Err Factor 0.000 Desired
-0.671 Sum -0.586 Transfer -0.586 Output

PE: 62
1.000 Err Factor 0.000 Desired

92

-0.110 Sum -0.110 Transfer -0.110 Output
PE: 63

1.000 Err Factor 0.000 Desired
-0.076 Sum -0.076 Transfer -0.076 Output

PE: 64
1.000 Err Factor 0.000 Desired
0.697 Sum 0.602 Transfer 0.602 Output

PE: 65
1.000 Err Factor 0.000 Desired

-0.083 Sum -0.083 Transfer -0.083 Output
PE: 66

1.000 Err Factor 0.000 Desired
-0.117 Sum -0.117 Transfer -0.117 Output

PE: 67
1.000 Err Factor 0.000 Desired

-2.059 Sum -0.968 Transfer -0.968 Output
PE: 68

1.000 Err Factor 0.000 Desired
0.513 Sum 0.472 Transfer 0.472 Output

PE: 69
1.000 Err Factor 0.000 Desired

-0.735 Sum -0.626 Transfer -0.626 Output
PE: 70

1.000 Err Factor 0.000 Desired
-0.142 Sum -0.141 Transfer -0.141 Output

PE: 71
1.000 Err Factor 0.000 Desired
0.405 Sum 0.384 Transfer 0.384 Output

PE: 72
1.000 Err Factor 0.000 Desired
0.007 Sum 0.007 Transfer 0.007 Output

PE: 73
1.000 Err Factor 0.000 Desired
3.931 Sum 0.999 Transfer 0.999 Output

PE: 74
1.000 Err Factor 0.000 Desired
0.238 Sum 0.234 Transfer 0.234 Output

PE: 75
1.000 Err Factor 0.000 Desired

-0.478 Sum -0.444 Transfer -0.444 Output
PE: 76

1.000 Err Factor 0;000 Desired
-0.288 Sum -0.280 Transfer -0.280 Output

PE: 77
1.000 Err Factor 0.000 Desired
0.474 Sum 0.441 Transfer 0.441 Output

PE: 78
1.000 Err Factor 0.000 Desired

-8.096 Sum -1.000 Transfer -1.000 Output
PE: 79

1.000 Err Factor 0.000 Desired
0.169 Sum 0.167 Transfer 0.167 Output

PE: 80
1.000 Err Factor 0.000 Desired

-0.261 Sum -0.255 Transfer -0.255 Output
Layer: Out

93

PEs: 1 Wgt Fields: 2 Sum: Sum
Spacing: 5 F' offset: 0.00 Transfer: TanH

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: out

Winner 1: None Winner 2: None
L/R Schedule: out

Recall Step 1 0 0 0 0
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.1500 0.0750 0.0188 0.0012 0.0000
Coefficient 2 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 81
1.000 Err Factor -0.298 Desired

-0.307 Sum -0.298 Transfer -0.298 Output
26 Weights 0.000 Error 0.000 Current Error

Decryption desired and actual output after convergence
according to input of Table 4.1:

Desired: Actual:
4780.QOOOOO 4779.549316
4942.000000 4941.904785
8523.000000 8523.464258
9880.000000 9880.255859
13751.000000 13750.194336
21386.000000 21385.947266
26946.000000 26945.638672
26139.000000 26138.501953
29325.000000 29324.567578
30022.000000 30022.140625
33050.000000 33049.261719
34609.000000 34609.441406
37175.000000 37174.546875
38939.000000 38939.292969
41305.000000 41305.357031
41525.000000 41525.300781
25907.000000 25907.408984
12828.000000 12828.163086
16986.000000 16985.839844
45926.000000 45925.791406
45353.000000 45353.366406
50536.000000 50535.578906
54086.000000 54086.265625
54097.000000 54097.269531
59988.000000 59988.027344
62803.000000 62803.003906
3018.000000 3017.567871
2445.000000 2444.980957

94

REFERENCES

1. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. Tuchman, "A Cryp-

tographic Key Management Scheme for Implementing the Data Encryption
Standard," IBM System Journal, Vol 17 No 2, 1978, pp. 10 6-10 7 .

2. Jennifer Seberry, Josef Pieprzyk, "Cryptography, An introduction to Computer
Security," Advances in Computer Science Series, Australia Pty Ltd, 1989, pp
8-188.

3. W. S. Scott, R. N. Mayo, G. Hamachi, J. K. Ousterhous,"1986 VLSI Tools Still
More Works by Original Artists," Report No. UCB/CSD 86/272, University
of California at Berkeley, Berkely, CA 1986.

4. VLSI Design Tools Reference Manual, Northwest Laboratory for Integrated
Systems, TR 88-09-01 University of Washington, Seattle, Sec 6.4 pp. 20-48.

5. Donald E. Knuth, The Art of Computer Programming, Vol.2: Seminumerical
Algorithm, Addison Wesley, Reading MA, 1981, pp. 399-401, 419-420.

6. Carl Pomerance,"Cryptography and Computational Number Theory-An Intro-
duction," Proceedings of Symposia in Applied Mathematics:American Mathe-
matical Society, Vol 42, Rhode'Island, 1990, pp.1 -1 1 .

7. D. H. Ackley, G. H. Hinton, T. J. Sejnowski, "A Learning Algorithm for Boltz-
man Machine," Cognitive Science 9, 1985, pp. 147-169.

8. G. W. Cottrell, P. Munro, D. Zipser, "Image Compression by Back-Propagation:
An Example of Extensional Programming," ICS Report 8702, University of
California at San Diego, Feb, 1987.

9. R. Hecht-Nielsen, Neurocomputing, Prentice Hall, Englewood Cliffs, NJ, 1991,
pp. 2, 124-137.

10. Neuralcomputing, Neuralworks Professional II/Plus and Neural Network Ex-
plorer, Neuralware Inc., Pittsburg, 1991, pp. 3-11, 89-101.

11. S. Goldwasser, S. Micali, A. C. Yao,"On Signature and Authorization," Ad-
vances in Cryptology: Proceedings of Crypto '82, Plenum Press., 1983, pp.

211-215.

f2. Giles Brassard, "Modern Cryptography," Lecture Notes in Computre Science.
Vol 325, Springer-Verlag, NewYork, 1988, pp.2 0- 3 1.

95

13. Kevin S. McCurley, "The Discrete Logarithm Problem", IBM Research Report
RJ6877, Yorktown Heights, NY, 1989, pp 2 0- 2 1 .

14. W. Diffie, M. G. Hellman,"New Direction in Cryptography," IEEE Transactions
on Information Theory, Vol. IT-22, 1976, pp. 472-492, 644-654.

15. Ronald L. Rivest, "RSA Chips (Past/Present/Future)," Advances in Cryptology-
Eurocrypt '84, Berlin 1985, p.159.

16. Carl Pomerance,"Factoring," Proceeding of Symposia in Applied Mathematics:
American Mathematical Society Vol 42, RI, 1990, pp.27-48.

17. J. A. Davis, D. B. Holdridge, G. J. Simmons, "Status Report on Factoring,"
Advances in Cryptology- Euro,.rypt '84, Berlin, 1985, p. 1 83 .

18. Carl Pomerance, "The Quadratic Sieve Factoring Algorithm," Advances in
Cryptology- Eurocrypt '84, Berlin, 1985, pp.169-181.

19. P.A. Findley, B. A. Johnson, "Modulo Exponentiation Using Recursive Sums of
Residues," Advances in Cryptology- Crypto '89, Springer-Verlag, pp. 371-386.

20. Neil West, Kamran Eshraghian, Principles of CMOS VLSI Design, Addison
Wesley, Reading, MA, pp.212-224, 310-312.

21. Andrei Vladimirescu, Sally Liu,"The Simulation of MOS Integrated Circuits
Using Syice2," E1et.;.,,,.ics Researi Laboratory, UC Berkeley, UCB/ERL M80/7,
October 1980.

22. Carver Mead, Lynn Conway, Introduction to VLSI Systems, Addison Wes-
ley,Reading MA 1980, pp.150-153.

23. FIPS,"Data EncryptioD Standard", Federal Information Processing Standard
Publication, 46-1, NBS, Jan, 1988.

24. R. Hecht-Nielsen, Neurocomputing, Prentice Hall, Englewood Cliffs, NJ, 1991,
pp. 3-1, 89-101.

25. S. Luce, D. Martins, S. Nunn, J. Waters, "Exploring the Back-Propagation
Model for Speech Application," Speech Tech', 1988, pp. 199-203.

26. Neuralcomputing, Neuralworks Professional II/Plus and Neural Network Ex-
plorer, Neuralware Inc., Pittsburg, 1991, pp. 3-11, 89-101.

27. Dorothy E. R. Denning, Cryptography and Data Security Addison Wesley,
Reading MA 1982, pp.62-78.

96

28. John Wakerly, Digital Design Principles and Practices, Prentice Hall, Engle-
wood Cliffs, NJ, pp. 484-486.

97

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5002

4. Dr. Chyan Yang, Code EC/Ya 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Herschel H. Loomis Jr, Code EC/Lo
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-50•3

6. Director National Security Agency
Attn: Mr Alan Chedester, V29
2800 Savage Rd
Ft Meade, MD 20755

7. LT Phong Nguyen
1236 Denton Avenue
Hayward, CA 94545

98

